The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104698 Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(k, j)*binomial(n-j+1, k+1). 7
 1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 19, 8, 1, 6, 25, 44, 33, 10, 1, 7, 36, 85, 96, 51, 12, 1, 8, 49, 146, 225, 180, 73, 14, 1, 9, 64, 231, 456, 501, 304, 99, 16, 1, 10, 81, 344, 833, 1182, 985, 476, 129, 18, 1, 11, 100, 489, 1408, 2471, 2668, 1765, 704, 163, 20, 1, 12 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The n-th column of the triangle is the binomial transform of the n-th row of A081277, followed by zeros. Example: column 3, (1, 6, 19, 44, ...) = binomial transform of row 3 of A081277: (1, 5, 8, 4, 0, 0, 0, ...). A104698 = reversal by rows of A142978. - Gary W. Adamson, Jul 17 2008 This sequence is jointly generated with A210222 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) + 1 and v(n,x) = 2x*u(n-1,x) + v(n-1,x) + 1. See the Mathematica section at A210222. - Clark Kimberling, Mar 19 2012 LINKS Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened FORMULA The triangle is extracted from the product A * B; A = [1; 1, 1; 1, 1, 1; ...], B = [1; 1, 1; 1, 3, 1; 1, 5, 5, 1; ...] both infinite lower triangular matrices (rest of the terms are zeros). The triangle of matrix B by rows = A008288, Delannoy numbers. Riordan array (1/(1-x)^2, x(1+x)/(1-x))=(1/(1-x), x)*(1/(1-x), x(1+x)/(1-x)); T(n, k)=sum{j=0..n, sum{i=0..j-k, C(j-k, i)*C(k, i)*2^i}}; T(n, k)=sum{j=0..k, sum{i=n-k-j, (n-k-j-i+1)*C(k, j)*C(k+i-1, i)}}. - Paul Barry, Jul 18 2005 T(n,k) = binomial(n+1,k+1)*2F1(-k,k-n;-n-1;-1) where 2F1(.;.;.) is a Gaussian hypergeometric function. - R. J. Mathar, Sep 04 2011 T(n,1)=n; T(n,n)=1; for 1 < k < n, T(n,k) = T(n-2,k-1) + T(n-1,k-1) + T(n-1,k). - Reinhard Zumkeller, Jul 17 2015 EXAMPLE Triangle begins   1;   2,  1;   3,  4,  1;   4,  9,  6,  1;   5, 16, 19,  8,  1;   6, 25, 44, 33, 10,  1;   7, 36, 85, 96, 51, 12,  1;   ... MAPLE A104698 := proc(n, k) add(binomial(k, j)*binomial(n-j+1, n-k-j), j=0..n-k) ; end proc: seq(seq(A104698(n, k), k=0..n), n=0..15) ; # R. J. Mathar, Sep 04 2011 MATHEMATICA u[1, _] = 1; v[1, _] = 1; u[n_, x_] := u[n, x] = x u[n-1, x] + v[n-1, x] + 1; v[n_, x_] := v[n, x] = 2 x u[n-1, x] + v[n-1, x] + 1; Table[CoefficientList[u[n, x], x], {n, 1, 11}] // Flatten (* Jean-François Alcover, Mar 10 2019, after Clark Kimberling *) PROG (PARI) T(n, k)=sum(j=0, n-k, binomial(k, j)*binomial(n-j+1, k+1)) \\ Charles R Greathouse IV, Jan 16 2012 (Haskell) a104698 n k = a104698_tabl !! (n-1) !! (k-1) a104698_row n = a104698_tabl !! (n-1) a104698_tabl = [1] : [2, 1] : f [1] [2, 1] where    f us vs = ws : f vs ws where      ws = zipWith (+) ([0] ++ us ++ [0]) \$           zipWith (+) ([1] ++ vs) (vs ++ [0]) -- Reinhard Zumkeller, Jul 17 2015 CROSSREFS Diagonal sums are A008937(n+1). Cf. A048739 (row sums), A008288, A005900 (column 3), A014820 (column 4) Cf. A081277, A142978 by antidiagonals, A119328, A110271 (matrix inverse). Sequence in context: A325001 A093375 A103283 * A067066 A210219 A125103 Adjacent sequences:  A104695 A104696 A104697 * A104699 A104700 A104701 KEYWORD nonn,tabl AUTHOR Gary W. Adamson, Mar 19 2005 EXTENSIONS Offset corrected by R. J. Mathar, Sep 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 18:19 EST 2021. Contains 349585 sequences. (Running on oeis4.)