login
A208519
Triangle of coefficients of polynomials v(n,x) jointly generated with A208518; see the Formula section.
3
1, 2, 2, 3, 5, 3, 4, 9, 11, 5, 5, 14, 26, 23, 8, 6, 20, 50, 65, 45, 13, 7, 27, 85, 145, 150, 86, 21, 8, 35, 133, 280, 385, 329, 160, 34, 9, 44, 196, 490, 840, 952, 692, 293, 55, 10, 54, 276, 798, 1638, 2310, 2232, 1413, 529, 89, 11, 65, 375, 1230, 2940, 4956
OFFSET
1,2
COMMENTS
coefficient of x^(n-1): Fibonacci(n+1) = A000045(n+1)
col 1: A000027
col 2: A000096
col 3: A051925
row sums: A002878 (bisection of Lucas sequence)
alternating row sums: A000045(n-2), Fibonacci numbers
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2...2
3...5....3
4...9....11...5
5...14...26...23...8
First five polynomials v(n,x):
1
2 + 2x
3 + 5x + 3x^2
4 + 9x + 11x^2 + 5x^3
5 + 14x + 26x^2 + 23x^3 + 8x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208518 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208519 *)
CROSSREFS
Cf. A208518.
Sequence in context: A124727 A210565 A125101 * A336725 A210232 A047666
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 28 2012
STATUS
approved