OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Rows n = 1..30 of the triangle, flattened
FORMULA
u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x) + 1,
v(n,x) = x*u(n-1,x) + v(n-1,x) + 1,
where u(1,x) = 1, v(1,x) = 1.
T(n, k) = [x^k]( u(n, x) ), where u(n, x) = (1+x)*u(n-1,x) + x^2*u(n-2,x) + 1 + x, u(1, x) = 1, and u(2, x) = 2 + 2*x. - G. C. Greubel, May 24 2021
EXAMPLE
First five rows:
1;
2, 2;
3, 5, 3;
4, 9, 10, 5;
5, 14, 22, 20, 8;
First three polynomials u(n,x):
u(1, x) = 1;
u(2, x) = 2 + 2*x;
u(3, x) = 3 + 5*x + 3*x^2.
MATHEMATICA
(* First program *)
u[1, x_]:= 1; v[1, x_]:= 1; z = 16;
u[n_, x_]:= x*u[n-1, x] + (x+1)*v[n-1, x] + 1;
v[n_, x_]:= x*u[n-1, x] + v[n-1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210565 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210595 *)
(* Second program *)
u[n_, x_]:= u[n, x]= If[n<2, (n+1)*(1+x)^n, (1+x)*u[n-1, x] +x^2*u[n-2, x] +1+x];
T[n_]:= CoefficientList[Series[u[n, x], {x, 0, n}], x];
Table[T[n-1], {n, 12}] (* G. C. Greubel, May 23 2021 *)
PROG
(Sage)
@CachedFunction
def u(n, x): return (n+1)*(1+x)^n if (n<2) else (1+x)*u(n-1, x) + x^2*u(n-2, x) +1+x
def T(n): return taylor( u(n, x) , x, 0, n).coefficients(x, sparse=False)
flatten([T(n-1) for n in (1..12)]) # G. C. Greubel, May 23 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 23 2012
STATUS
approved