login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295120
T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally or vertically adjacent to 1 or 4 1s.
7
1, 2, 2, 3, 5, 3, 4, 9, 9, 4, 6, 20, 26, 20, 6, 9, 41, 77, 77, 41, 9, 13, 85, 226, 326, 226, 85, 13, 19, 178, 665, 1373, 1373, 665, 178, 19, 28, 369, 1960, 5793, 8257, 5793, 1960, 369, 28, 41, 769, 5769, 24347, 49302, 49302, 24347, 5769, 769, 41, 60, 1600, 16983, 102398
OFFSET
1,2
COMMENTS
Table starts
..1...2.....3......4........6.........9.........13...........19............28
..2...5.....9.....20.......41........85........178..........369...........769
..3...9....26.....77......226.......665.......1960.........5769.........16983
..4..20....77....326.....1373......5793......24347.......102398........431050
..6..41...226...1373.....8257.....49302.....295083......1768323......10586331
..9..85...665...5793....49302....420519....3590821.....30650456.....261518933
.13.178..1960..24347...295083...3590821...43655680....530696748....6452840307
.19.369..5769.102398..1768323..30650456..530696748...9196006628..159316011413
.28.769.16983.431050.10586331.261518933.6452840307.159316011413.3931962260999
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3)
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3) -a(n-4)
k=3: [order 10]
k=4: [order 14]
k=5: [order 40]
k=6: [order 78]
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..0. .0..1..0..0. .0..0..0..0. .1..0..0..0. .1..1..0..0
..0..1..0..0. .1..1..1..0. .0..1..1..0. .1..0..1..1. .0..0..0..0
..1..0..0..0. .0..1..0..0. .0..0..0..1. .0..0..0..0. .0..0..1..0
..1..0..0..1. .1..0..1..0. .0..0..0..1. .0..0..0..0. .0..0..1..0
..0..0..0..1. .1..0..1..0. .0..1..1..0. .1..1..0..0. .0..0..0..0
CROSSREFS
Column 1 is A000930(n+1).
Column 2 is A105309(n+1).
Sequence in context: A225622 A196436 A197199 * A196957 A124727 A210565
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 15 2017
STATUS
approved