login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295121 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(2*k-1)). 4
1, -1, -5, -10, 3, 42, 124, 160, 15, -677, -1941, -3425, -2807, 3488, 21004, 49547, 77879, 63395, -65104, -406091, -988889, -1655508, -1779329, -145347, 5087175, 15405270, 30158849, 42617486, 36116136, -19457047, -161973496, -418712896, -759063566 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(2*n-1), g(n) = -1.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

FORMULA

Convolution inverse of A294836.

G.f.: Product_{k>=1} 1/(1 + x^k)^A000384(k).

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(2*d-1)*(-1)^(n/d).

PROG

(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^(k*(2*k-1))))

CROSSREFS

Cf. A294846 (b=3), A284896 (b=4), A295086 (b=5), this sequence (b=6), A295122 (b=7), A295123 (b=8).

Sequence in context: A169841 A084341 A054513 * A066200 A053822 A262922

Adjacent sequences:  A295118 A295119 A295120 * A295122 A295123 A295124

KEYWORD

sign

AUTHOR

Seiichi Manyama, Nov 15 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 10:01 EST 2022. Contains 350565 sequences. (Running on oeis4.)