login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A105309
a(n) = |b(n)|^2 = x^2 + 3*y^2 where (x,y,y,y) is the quaternion b(n) of the sequence b of quaternions defined by b(0)=1,b(1)=1, b(n) = b(n-1) + b(n-2)*(0,c,c,c) where c = 1/sqrt(3).
23
1, 1, 2, 5, 9, 20, 41, 85, 178, 369, 769, 1600, 3329, 6929, 14418, 30005, 62441, 129940, 270409, 562725, 1171042, 2436961, 5071361, 10553600, 21962241, 45703841, 95110562, 197926885, 411889609, 857150100, 1783745641, 3712008565
OFFSET
0,3
COMMENTS
Prepending 0 and keeping the offset at 0, turns this into a divisibility sequence with g.f. x(1-x^2)/(1-x-2x^2-x^3+x^4). - T. D. Noe, Dec 22 2008
Equals INVERT transform of (1, 1, 2, 0, 2, 0, 2, ...). - Gary W. Adamson, Apr 28 2009
Sequence gives the norm of the coefficients in 1/(1 - I*x - I*x^2), where I^2=-1. - Paul D. Hanna, Dec 06 2011
This is the case P1 = 1, P2 = -4, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 27 2014
LINKS
Ricky X. F. Chen and Louis W. Shapiro, On Sequences G(n) satisfying G(n) = (d+2)G(n-1)-G(n-2), J. Int. Seq. 10 (2007) 07.8.1, Theorem 16.
Richard J. Mathar, Bivariate Generating Functions Enumerating Non-Bonding Dominoes on Rectangular Boards, arXiv:2404.18806 [math.CO], 2024. See p. 8.
Eric Weisstein's World of Mathematics, Quaternion
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
FORMULA
a(n) = A092886(n+1) - A092886(n-1), n > 0.
a(n) = A201837(n)^2 + A201838(n)^2. - Paul D. Hanna, Dec 06 2011
From Peter Bala, Mar 27 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(17))/4 and beta = (1 - sqrt(17))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1; 1, 1/2].
a(n) = U(n-1,(1 + i)/sqrt(8))*U(n-1,(1 - i)/sqrt(8)), where U(n,x) denotes the Chebyshev polynomial of the second kind.
The o.g.f. is the Chebyshev transform of the rational function x/(1 - x + 4*x^2) = x + x^2 + 5*x^2 + 9*x^4 + 29*x^5 + ... (see A006131), where the Chebyshev transform takes the function A(x) to the function (1 - x^2)/(1 + x^2)*A(x/(1 + x^2)).
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)
a(n) = abs(((sqrt(4*i - 1) + i)^(n+1) - (i - sqrt(4*i - 1))^(n+1)) / 2^(n+1) / sqrt(4*i - 1))^2. - Daniel Suteu, Dec 20 2016
a(n) = a(-2-n) for all n in Z. - Michael Somos, Dec 20 2016
G.f.: (1+x)*(1-x)/(1-x-2*x^2-x^3+x^4). - R. J. Mathar, Apr 26 2024
EXAMPLE
G.f. = 1 + x + 2*x^2 + 5*x^3 + 9*x^4 + 20*x^5 + 41*x^6 + 85*x^7 + 178*x^8 + ...
MATHEMATICA
a[ n_] := (ChebyshevT[n + 1, (1 + Sqrt[17])/4] - ChebyshevT[n + 1, (1 - Sqrt[17])/4]) 2 / Sqrt[17] // Simplify; (* Michael Somos, Dec 20 2016 *)
PROG
(PARI) {a(n) = my(A); n = abs(n+1)-1; if( n<2, n>=0, n++; A = vector(n, i, 1); for(i=3, n, A[i] = A[i-1] + A[i-2]*I); norm(A[n]))}; /* Michael Somos, Apr 28 2005 */
(PARI) {a(n)=norm(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)), n))} /* Paul D. Hanna */
(PARI) {a(n)=polcoeff((1-x^2)/(1-x-2*x^2-x^3+x^4)+x*O(x^n), n)}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gerald McGarvey, Apr 25 2005
STATUS
approved