

A105309


a(n) = b(n)^2 = x^2 + 3*y*2 where (x,y,y,y) is the quaternion b(n) of the sequence b of quaternions defined by b(0)=1,b(1)=1, b(n) = b(n1) + b(n2)*(0,c,c,c) where c = 1/sqrt(3).


23



1, 1, 2, 5, 9, 20, 41, 85, 178, 369, 769, 1600, 3329, 6929, 14418, 30005, 62441, 129940, 270409, 562725, 1171042, 2436961, 5071361, 10553600, 21962241, 45703841, 95110562, 197926885, 411889609, 857150100, 1783745641, 3712008565
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Prepending 0 and keeping the offset at 0, turns this into a divisibility sequence with g.f. x(1x^2)/(1x2x^2x^3+x^4).  T. D. Noe, Dec 22 2008
Equals INVERT transform of (1, 1, 2, 0, 2, 0, 2, ...).  Gary W. Adamson, Apr 28 2009
Sequence gives the norm of the coefficients in 1/(1  I*x  I*x^2), where I^2=1.  Paul D. Hanna, Dec 06 2011
This is the case P1 = 1, P2 = 4, Q = 1 of the 3 parameter family of 4th order linear divisibility sequences found by Williams and Guy.  Peter Bala, Mar 27 2014


LINKS

Table of n, a(n) for n=0..31.
Peter Bala, Linear divisibility sequences and Chebyshev polynomials
R. X. F. Chen, L. W. Shapiro, On Sequences G(n) satisfying G(n) = (d+2)G(n1)G(n2), J. Int. Seq. 10 (2007) 07.8.1, Theorem 16.
Eric Weisstein's World of Mathematics, "Quaternion"
H. C. Williams and R. K. Guy, Some fourthorder linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 12551277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
Index entries for linear recurrences with constant coefficients, signature (1,2,1,1).


FORMULA

a(n) = A092886(n+1)  A092886(n1), n>0.
a(n) = A201837(n)^2 + A201838(n)^2.  Paul D. Hanna, Dec 06 2011
From Peter Bala, Mar 27 2014: (Start)
a(n) = ( T(n,alpha)  T(n,beta) )/(alpha  beta), where alpha = (1 + sqrt(17))/4 and beta = (1  sqrt(17))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1; 1, 1/2].
a(n) = U(n1,(1 + i)/sqrt(8))*U(n1,(1  i)/sqrt(8)), where U(n,x) denotes the Chebyshev polynomial of the second kind.
The o.g.f. is the Chebyshev transform of the rational function x/(1  x + 4*x^2) = x + x^2 + 5*x^2 + 9*x^4 + 29*x^5 + ... (see A006131), where the Chebyshev transform takes the function A(x) to the function (1  x^2)/(1 + x^2)*A(x/(1 + x^2)).
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4thorder linear divisibility sequences. (End)
a(n) = abs(((sqrt(4*i  1) + i)^(n+1)  (i  sqrt(4*i  1))^(n+1)) / 2^(n+1) / sqrt(4*i  1))^2.  Daniel Suteu, Dec 20 2016
a(n) = a(2n) for all n in Z.  Michael Somos, Dec 20 2016


EXAMPLE

G.f. = 1 + x + 2*x^2 + 5*x^3 + 9*x^4 + 20*x^5 + 41*x^6 + 85*x^7 + 178*x^8 + ...


MATHEMATICA

a[ n_] := (ChebyshevT[n + 1, (1 + Sqrt[17])/4]  ChebyshevT[n + 1, (1  Sqrt[17])/4]) 2 / Sqrt[17] // Simplify; (* Michael Somos, Dec 20 2016 *)


PROG

(PARI) {a(n) = my(A); n = abs(n+1)1; if( n<2, n>=0, n++; A = vector(n, i, 1); for(i=3, n, A[i] = A[i1] + A[i2]*I); norm(A[n]))}; /* Michael Somos, Apr 28 2005 */
(PARI) {a(n)=norm(polcoeff(1/(1I*xI*x^2+x*O(x^n)), n))} /* Paul D. Hanna */
(PARI) {a(n)=polcoeff((1x^2)/(1x2*x^2x^3+x^4)+x*O(x^n), n)}


CROSSREFS

Cf. A092886, A201837, A201838.
Cf. A006131, A100047, A240513
Sequence in context: A079117 A030137 A243080 * A192572 A300531 A097163
Adjacent sequences: A105306 A105307 A105308 * A105310 A105311 A105312


KEYWORD

nonn,easy


AUTHOR

Gerald McGarvey, Apr 25 2005


STATUS

approved



