The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105309 a(n) = |b(n)|^2 = x^2 + 3*y*2 where (x,y,y,y) is the quaternion b(n) of the sequence b of quaternions defined by b(0)=1,b(1)=1, b(n) = b(n-1) + b(n-2)*(0,c,c,c) where c = 1/sqrt(3). 23
 1, 1, 2, 5, 9, 20, 41, 85, 178, 369, 769, 1600, 3329, 6929, 14418, 30005, 62441, 129940, 270409, 562725, 1171042, 2436961, 5071361, 10553600, 21962241, 45703841, 95110562, 197926885, 411889609, 857150100, 1783745641, 3712008565 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Prepending 0 and keeping the offset at 0, turns this into a divisibility sequence with g.f. x(1-x^2)/(1-x-2x^2-x^3+x^4). - T. D. Noe, Dec 22 2008 Equals INVERT transform of (1, 1, 2, 0, 2, 0, 2, ...). - Gary W. Adamson, Apr 28 2009 Sequence gives the norm of the coefficients in 1/(1 - I*x - I*x^2), where I^2=-1. - Paul D. Hanna, Dec 06 2011 This is the case P1 = 1, P2 = -4, Q = 1 of the 3 parameter family of 4th order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 27 2014 LINKS R. X. F. Chen, L. W. Shapiro, On Sequences G(n) satisfying G(n) = (d+2)G(n-1)-G(n-2), J. Int. Seq. 10 (2007) 07.8.1, Theorem 16. Eric Weisstein's World of Mathematics, "Quaternion" H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277. H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume Index entries for linear recurrences with constant coefficients, signature (1,2,1,-1). FORMULA a(n) = A092886(n+1) - A092886(n-1), n>0. a(n) = A201837(n)^2 + A201838(n)^2. - Paul D. Hanna, Dec 06 2011 From Peter Bala, Mar 27 2014: (Start) a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(17))/4 and beta = (1 - sqrt(17))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind. a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1; 1, 1/2]. a(n) = U(n-1,(1 + i)/sqrt(8))*U(n-1,(1 - i)/sqrt(8)), where U(n,x) denotes the Chebyshev polynomial of the second kind. The o.g.f. is the Chebyshev transform of the rational function x/(1 - x + 4*x^2) = x + x^2 + 5*x^2 + 9*x^4 + 29*x^5 + ... (see A006131), where the Chebyshev transform takes the function A(x) to the function (1 - x^2)/(1 + x^2)*A(x/(1 + x^2)). See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End) a(n) = abs(((sqrt(4*i - 1) + i)^(n+1) - (i - sqrt(4*i - 1))^(n+1)) / 2^(n+1) / sqrt(4*i - 1))^2. - Daniel Suteu, Dec 20 2016 a(n) = a(-2-n) for all n in Z. - Michael Somos, Dec 20 2016 EXAMPLE G.f. = 1 + x + 2*x^2 + 5*x^3 + 9*x^4 + 20*x^5 + 41*x^6 + 85*x^7 + 178*x^8 + ... MATHEMATICA a[ n_] := (ChebyshevT[n + 1, (1 + Sqrt[17])/4] - ChebyshevT[n + 1, (1 - Sqrt[17])/4]) 2 / Sqrt[17] // Simplify; (* Michael Somos, Dec 20 2016 *) PROG (PARI) {a(n) = my(A); n = abs(n+1)-1; if( n<2, n>=0, n++; A = vector(n, i, 1); for(i=3, n, A[i] = A[i-1] + A[i-2]*I); norm(A[n]))}; /* Michael Somos, Apr 28 2005 */ (PARI) {a(n)=norm(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)), n))} /* Paul D. Hanna */ (PARI) {a(n)=polcoeff((1-x^2)/(1-x-2*x^2-x^3+x^4)+x*O(x^n), n)} CROSSREFS Cf. A092886, A201837, A201838. Cf. A006131, A100047, A240513 Sequence in context: A079117 A030137 A243080 * A192572 A300531 A097163 Adjacent sequences: A105306 A105307 A105308 * A105310 A105311 A105312 KEYWORD nonn,easy AUTHOR Gerald McGarvey, Apr 25 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 08:56 EST 2022. Contains 358693 sequences. (Running on oeis4.)