OFFSET
0,4
COMMENTS
If P(x),Q(x) are n-th and (n-1)-th Fibonacci polynomials, then a(n)=real part of the product of P(I) and conjugate Q(I).
LINKS
FORMULA
G.f.: x/(x^4-x^3-2x^2-x+1). a(n)=a(n-1)+2*a(n-2)+a(n-3)-a(n-4). a(n)=-a(-2-n).
EXAMPLE
Fibonacci polynomials P(5)=1+4x+3x^2, P(4)=1+3x+x^2. Conjugate product evaluated at I is (-2+4I)*(-3I)=12-6I and so a(5)=12.
MATHEMATICA
CoefficientList[Series[x/(x^4-x^3-2x^2-x+1), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 2, 1, -1}, {0, 1, 1, 3}, 40] (* Harvey P. Dale, Feb 27 2015 *)
PROG
(PARI) a(n)=local(m); if(n<1, if(n>-3, 0, -a(-2-n)), m=contfracpnqn(matrix(2, n, i, j, I)); real(m[1, 1]*conj(m[2, 1])))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Mar 11 2004
STATUS
approved