login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092886
Expansion of x/(x^4-x^3-2x^2-x+1).
4
0, 1, 1, 3, 6, 12, 26, 53, 111, 231, 480, 1000, 2080, 4329, 9009, 18747, 39014, 81188, 168954, 351597, 731679, 1522639, 3168640, 6594000, 13722240, 28556241, 59426081, 123666803, 257352966, 535556412, 1114503066, 2319302053
OFFSET
0,4
COMMENTS
If P(x),Q(x) are n-th and (n-1)-th Fibonacci polynomials, then a(n)=real part of the product of P(I) and conjugate Q(I).
FORMULA
G.f.: x/(x^4-x^3-2x^2-x+1). a(n)=a(n-1)+2*a(n-2)+a(n-3)-a(n-4). a(n)=-a(-2-n).
EXAMPLE
Fibonacci polynomials P(5)=1+4x+3x^2, P(4)=1+3x+x^2. Conjugate product evaluated at I is (-2+4I)*(-3I)=12-6I and so a(5)=12.
MATHEMATICA
CoefficientList[Series[x/(x^4-x^3-2x^2-x+1), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 2, 1, -1}, {0, 1, 1, 3}, 40] (* Harvey P. Dale, Feb 27 2015 *)
PROG
(PARI) a(n)=local(m); if(n<1, if(n>-3, 0, -a(-2-n)), m=contfracpnqn(matrix(2, n, i, j, I)); real(m[1, 1]*conj(m[2, 1])))
CROSSREFS
Sequence in context: A278821 A274476 A274059 * A207094 A135035 A054195
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Mar 11 2004
STATUS
approved