login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092885
Number of partitions of n in which no parts are multiples of 25.
4
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1957, 2435, 3008, 3715, 4560, 5597, 6831, 8334, 10121, 12280, 14841, 17921, 21560, 25914, 31050, 37162, 44352, 52877, 62876, 74685, 88507
OFFSET
0,3
LINKS
Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
T. Horie and N. Kanou, Certain modular functions similar to the Dedekind eta function, Abh. Math. Sem. Univ. Hamburg 72 (2002), 89-117. MR1941549 (2003j:11043).
FORMULA
Expansion of q^(-1) * eta(q^25) / eta(q) in powers of q.
Euler transform of period 25 sequence [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ...].
Given g.f. A(x), then B(x) = x * A(x) satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^3 + v^3 - 5*(u*v)^2 - 2*u*v *(u+v) - u*v.
G.f.: Product_{k>0} (1 - x^(25*k)) / (1 - x^k).
a(n) ~ exp(4*Pi*sqrt(n)/5) / (5*sqrt(10)*n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
a(n) = (1/n)*Sum_{k=1..n} A227131(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Jun 16 2017
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + ...
G.f. = q + q^2 + 2*q^3 + 3*q^4 + 5*q^5 + 7*q^6 + 11*q^7 + 15*q^8 + 22*q^9 + 30*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 25, n, 25}] / Product[ 1 - x^k, {k, n}], {x, 0, n}];
a[ n_] := SeriesCoefficient[(QPochhammer[ x^25] / QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, May 13 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^25 + A) / eta(x + A), n))};
(PARI) {a(n) = local(A, m); if( n<0, 0, n++; m=5; A = x + O(x^6); while( m<n, m*=5; A = x * subst((A * (1 - 2*A + 4*A^2 - 3*A^3 + A^4 ) / (1 + 3*A + 4*A^2 + 2*A^3 + A^4) / x)^(1/5), x, x^5)); polcoeff( 1 / (1/A - A -1), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 10 2004
STATUS
approved