login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330643
a(n) is the number of partitions of n with Durfee square of size <= 5.
3
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17976, 21635, 26010, 31175, 37318, 44547, 53109, 63153, 74996, 88850, 105113, 124078, 146256, 172032, 202056, 236844
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, 1, -2, -1, -2, 0, 2, 6, 2, -3, -6, -5, -2, 3, 12, 3, -2, -5, -6, -3, 2, 6, 2, 0, -2, -1, -2, 1, 2, -1).
FORMULA
a(n) = A000041(n), 0 <= n <= 35.
a(n) = A330642(n), 0 <= n <= 24.
a(n) = A330642(n) + A117487(n-24), n >= 25.
a(n) = n + A006918(n-3) + A117485(n) + A117486(n-16) + A117487(n-24), n >= 25.
G.f.: Sum_{k=0..5} x^(k^2)/(Product_{j=1..k} (1 - x^j))^2. - Andrew Howroyd, Dec 27 2024
PROG
(PARI) seq(n) = Vec(sum(k=0, 5, x^(k^2)/prod(j=1, k, 1 - x^j)^2) + O(x*x^n)) \\ Andrew Howroyd, Dec 27 2024
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 24 2019
STATUS
approved