login
A330642
a(n) is the number of partitions of n with Durfee square of size <= 4.
2
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1957, 2434, 3005, 3708, 4545, 5568, 6779, 8245, 9974, 12046, 14478, 17372, 20747, 24732, 29360, 34782, 41045, 48337, 56716, 66410, 77498, 90247, 104763, 121366, 140181, 161590, 185755
OFFSET
0,3
FORMULA
a(n) = A000041(n), 0 <= n <= 24.
a(n) = A330641(n), 0 <= n <= 15.
a(n) = A330641(n) + A117486(n-16), n >= 16.
a(n) = n + A006918(n-3) + A117485(n) + A117486(n-16), n >= 16.
Conjectures from Colin Barker, Jan 01 2020: (Start)
G.f.: (1 - x - x^2 + 3*x^5 - x^7 - 2*x^8 - 2*x^9 + 3*x^10 + x^11 + x^12 - x^13 - 2*x^14 + x^15 + x^17 - x^19 + x^20) / ((1 - x)^8*(1 + x)^4*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) - 4*a(n-5) + 4*a(n-6) + 4*a(n-7) + 2*a(n-8) - 10*a(n-10) + 2*a(n-12) + 4*a(n-13) + 4*a(n-14) - 4*a(n-15) - a(n-16) - 2*a(n-17) + a(n-18) + 2*a(n-19) - a(n-20) for n>20.
(End)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 24 2019
STATUS
approved