login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330640
a(n) is the number of partitions of n with Durfee square of size <= 2.
5
1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 51, 67, 83, 105, 127, 156, 185, 222, 259, 305, 351, 407, 463, 530, 597, 676, 755, 847, 939, 1045, 1151, 1272, 1393, 1530, 1667, 1821, 1975, 2147, 2319, 2510, 2701, 2912, 3123, 3355, 3587, 3841, 4095, 4372, 4649, 4950, 5251, 5577, 5903, 6255, 6607, 6986
OFFSET
0,3
COMMENTS
This is an easy sequence since A006918 is the partial sums of A008805 (triangular numbers repeated).
FORMULA
a(n) = A028310(n), 0 <= n <= 2.
a(n) = A028310(n) + A006918(n-3), n >= 3.
Or without A028310:
a(0) = 1, a(1) = 1, a(2) = 2.
a(n) = n + A006918(n-3), n >= 3.
From Colin Barker, Dec 31 2019: (Start)
G.f.: (1 - x - x^2 + 2*x^3 - x^5 + x^6) / ((1 - x)^4*(1 + x)^2).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
a(n) = (3 - 3*(-1)^n + (49+3*(-1)^n)*n - 6*n^2 + 2*n^3) / 48.
(End)
PROG
(PARI) Vec((1 - x - x^2 + 2*x^3 - x^5 + x^6) / ((1 - x)^4*(1 + x)^2) + O(x^60)) \\ Colin Barker, Dec 31 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Dec 22 2019
STATUS
approved