login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201837
G.f.: real part of 1/(1 - i*x - i*x^2) where i=sqrt(-1).
3
1, 0, -1, -2, 0, 4, 5, -2, -13, -12, 12, 40, 25, -52, -117, -38, 196, 324, -3, -678, -841, 360, 2200, 2000, -2079, -6760, -4121, 8918, 19720, 6084, -33435, -54442, 1547, 115228, 140772, -63880, -372775, -332892, 359763, 1142322, 678796, -1528956, -3323203
OFFSET
0,4
COMMENTS
The norm of the coefficients in 1/(1 - i*x - i*x^2) is given by A105309.
FORMULA
G.f.: 1/(1 + x^2*(1+x)^2).
a(n) = -(A201838(n-1) + A201838(n-2)), where A201838 gives the imaginary part of the coefficients in 1/(1 - i*x - i*x^2).
a(n) = Re((((i + sqrt(4*i-1))^(n+1) - (i - sqrt(4*i-1))^(n+1)))/(2^(n+1)*sqrt(4*i-1))), where i=sqrt(-1). - Daniel Suteu, Apr 20 2018
a(n) = - a(n-2) - 2*a(n-3) - a(n-4). - Wesley Ivan Hurt, Sep 05 2022
EXAMPLE
G.f.: A(x) = 1 - x^2 - 2*x^3 + 4*x^5 + 5*x^6 - 2*x^7 - 13*x^8 - 12*x^9 +...
A201838 gives the imaginary part of coefficients in 1/(1 -i*x - i*x^2) and begins: 0, 1, 1, -1, -3, -2, 4, 9, 3, -15, -25, 0, 52, 65, -27, -169, -155, 158, 520,... in which this sequence equals the negative of the pairwise sums of A201838.
MATHEMATICA
Re/@ CoefficientList[Series[1/(1-I*x-I*x^2), {x, 0, 50}], x] (* Harvey P. Dale, Dec 10 2011 *)
PROG
(PARI) {a(n)=real(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)), n))}
(PARI) {a(n)=polcoeff(1/(1 + x^2 + 2*x^3 + x^4 +x*O(x^n)), n)}
CROSSREFS
Cf. A201838 (imag), A105309 (norm).
Sequence in context: A258100 A173335 A335118 * A326052 A004482 A376660
KEYWORD
sign,easy
AUTHOR
Paul D. Hanna, Dec 06 2011
STATUS
approved