OFFSET
0,4
COMMENTS
The norm of the coefficients in 1/(1 - i*x - i*x^2) is given by A105309.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (0,-1,-2,-1).
FORMULA
G.f.: 1/(1 + x^2*(1+x)^2).
a(n) = -(A201838(n-1) + A201838(n-2)), where A201838 gives the imaginary part of the coefficients in 1/(1 - i*x - i*x^2).
a(n) = Re((((i + sqrt(4*i-1))^(n+1) - (i - sqrt(4*i-1))^(n+1)))/(2^(n+1)*sqrt(4*i-1))), where i=sqrt(-1). - Daniel Suteu, Apr 20 2018
a(n) = - a(n-2) - 2*a(n-3) - a(n-4). - Wesley Ivan Hurt, Sep 05 2022
EXAMPLE
G.f.: A(x) = 1 - x^2 - 2*x^3 + 4*x^5 + 5*x^6 - 2*x^7 - 13*x^8 - 12*x^9 +...
MATHEMATICA
Re/@ CoefficientList[Series[1/(1-I*x-I*x^2), {x, 0, 50}], x] (* Harvey P. Dale, Dec 10 2011 *)
PROG
(PARI) {a(n)=real(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)), n))}
(PARI) {a(n)=polcoeff(1/(1 + x^2 + 2*x^3 + x^4 +x*O(x^n)), n)}
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul D. Hanna, Dec 06 2011
STATUS
approved