login
A335118
Decimal expansion of the sum of the reciprocals of the perfect numbers.
3
2, 0, 4, 5, 2, 0, 1, 4, 2, 8, 3, 8, 9, 2, 6, 4, 3, 0, 1, 7, 8, 1, 3, 4, 4, 2, 9, 0, 9, 8, 4, 5, 5, 5, 7, 6, 6, 7, 7, 3, 1, 1, 4, 8, 9, 3, 5, 0, 7, 6, 3, 3, 9, 7, 0, 0, 6, 4, 2, 4, 8, 2, 4, 8, 9, 8, 6, 2, 2, 7, 4, 4, 0, 4, 5, 1, 3, 1, 9, 8, 5, 4, 0, 7, 0, 7, 6
OFFSET
0,1
COMMENTS
Bayless and Klyve (2013) calculated the first 149 terms of this sequence. The terms beyond this are uncertain due to the possible existence of odd perfect numbers larger than 10^300.
REFERENCES
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 244.
LINKS
Jonathan Bayless and Dominic Klyve, Reciprocal sums as a knowledge metric: theory, computation, and perfect numbers, The American Mathematical Monthly, Vol. 120, No. 9 (2013), pp. 822-831, alternative link, preprint.
FORMULA
Equals Sum_{k>=1} 1/A000396(k).
EXAMPLE
0.20452014283892643017813442909845557667731148935076...
MATHEMATICA
RealDigits[Sum[1/2^(p - 1)/(2^p - 1), {p, MersennePrimeExponent[Range[14]]}], 10, 100][[1]]
RealDigits[Total[1/PerfectNumber[Range[15]]], 10, 120][[1]] (* Harvey P. Dale, Nov 25 2023 *)
CROSSREFS
Sequence in context: A164616 A258100 A173335 * A201837 A326052 A004482
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, May 24 2020
STATUS
approved