The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335115 a(2*n) = 2*n - a(n), a(2*n+1) = 2*n + 1. 1
 1, 1, 3, 3, 5, 3, 7, 5, 9, 5, 11, 9, 13, 7, 15, 11, 17, 9, 19, 15, 21, 11, 23, 15, 25, 13, 27, 21, 29, 15, 31, 21, 33, 17, 35, 27, 37, 19, 39, 25, 41, 21, 43, 33, 45, 23, 47, 33, 49, 25, 51, 39, 53, 27, 55, 35, 57, 29, 59, 45, 61, 31, 63, 43, 65, 33, 67, 51, 69, 35, 71, 45, 73, 37, 75 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 FORMULA G.f.: Sum_{k>=0} (-1)^k * x^(2^k) / (1 - x^(2^k))^2. G.f. A(x) satisfies: A(x) = x / (1 - x)^2 - A(x^2). Dirichlet g.f.: zeta(s-1) / (1 + 2^(-s)). a(n) = Sum_{d|n} A154269(n/d) * d. Sum_{k=1..n} a(k) ~ 2*n^2/5. - Vaclav Kotesovec, Jun 11 2020 Multiplicative with a(2^e) = A001045(e+1) and a(p^e) = p^e for e >= 0 and prime p > 2. - Werner Schulte, Oct 05 2020 MATHEMATICA a[n_] := a[n] = If[EvenQ[n], n - a[n/2], n]; Table[a[n], {n, 1, 75}] nmax = 75; CoefficientList[Series[Sum[(-1)^k x^(2^k)/(1 - x^(2^k))^2, {k, 0, Floor[Log[2, nmax]]}], {x, 0, nmax}], x] // Rest f[p_, e_] := If[p == 2, (2^(e + 1) + (-1)^e)/3, p^e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *) PROG (PARI) a(n) = my(k=valuation(n, 2)); (n<<1 + (n>>k)*(-1)^k)/3; \\ Kevin Ryde, Oct 06 2020 CROSSREFS Cf. A035263, A050292, A129527, A154269, A001045. Sequence in context: A015126 A219793 A215495 * A299149 A096866 A015909 Adjacent sequences:  A335112 A335113 A335114 * A335116 A335117 A335118 KEYWORD nonn,mult AUTHOR Ilya Gutkovskiy, May 23 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 05:13 EDT 2021. Contains 343965 sequences. (Running on oeis4.)