login
A376660
Decimal expansion of a constant related to the asymptotics of A376630 and A376631.
7
2, 0, 4, 5, 3, 9, 0, 6, 9, 1, 8, 5, 2, 0, 5, 0, 6, 3, 9, 8, 9, 3, 7, 0, 4, 2, 4, 4, 3, 4, 2, 6, 0, 1, 2, 5, 2, 2, 6, 5, 9, 4, 8, 7, 9, 3, 4, 6, 7, 8, 3, 3, 1, 8, 7, 9, 9, 4, 6, 6, 2, 8, 7, 0, 9, 3, 4, 4, 5, 5, 6, 1, 7, 3, 3, 7, 1, 1, 0, 7, 1, 3, 9, 6, 9, 8, 9, 2, 2, 1, 6, 4, 8, 1, 4, 2, 5, 3, 9, 5, 2, 5, 2, 8, 0, 9
OFFSET
1,1
FORMULA
Equals limit_{n->infinity} A376630(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376631(n)^(1/sqrt(n)).
Equals A376815^(1/2). - Vaclav Kotesovec, Oct 06 2024
Equals exp(sqrt(3*log(r)^2/4 + 2*polylog(2, r^(1/2)) - Pi^2/6)), where r = A088559 = 0.4655712318767680266567312252199... is the real root of the equation r*(1+r)^2 = 1. - Vaclav Kotesovec, Oct 07 2024
EXAMPLE
2.045390691852050639893704244342601252265948793467833187994662870934455617...
MATHEMATICA
RealDigits[E^Sqrt[3*Log[r]^2/4 + 2*PolyLog[2, r^(1/2)] - Pi^2/6] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* Vaclav Kotesovec, Oct 07 2024 *)
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Oct 01 2024
STATUS
approved