login
A376658
Decimal expansion of a constant related to the asymptotics of A376624 and A376625.
8
8, 4, 6, 0, 1, 8, 7, 2, 4, 4, 2, 5, 2, 9, 6, 4, 8, 0, 9, 7, 5, 2, 3, 0, 0, 0, 9, 8, 8, 8, 9, 1, 7, 5, 9, 4, 3, 3, 5, 4, 7, 0, 6, 3, 5, 9, 5, 1, 0, 1, 4, 3, 6, 7, 6, 2, 2, 8, 2, 1, 1, 5, 8, 9, 0, 4, 3, 2, 1, 4, 9, 8, 2, 7, 8, 2, 6, 0, 7, 4, 4, 5, 0, 9, 6, 6, 7, 2, 6, 4, 2, 9, 6, 3, 0, 6, 8, 0, 4, 9, 8, 4, 4, 5, 7
OFFSET
1,1
FORMULA
Equals exp(sqrt(2*(log(r)^2 + 2*polylog(2, sqrt(r))))), where r = A072223 = 0.52488859865640479389948613854128391569... is the smallest real root of the equation (1 - r^2)^2 = r.
Equals limit_{n->infinity} A376624(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376625(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A377075(n)^(1/sqrt(n)).
Equals exp(2*sqrt(2*log(A356032)^2 + polylog(2, A356032))).
EXAMPLE
8.46018724425296480975230009888917594335470635951014367622821158904321498...
MATHEMATICA
RealDigits[E^(Sqrt[2*Log[r]^2 + 4*PolyLog[2, Sqrt[r]]]) /. r -> 1/(2*Sqrt[3/(4 + ((155 - 3*Sqrt[849])/2)^(1/3) + ((155 + 3*Sqrt[849])/2)^(1/3))]) - Sqrt[8/3 - ((155 - 3*Sqrt[849])/2)^(1/3)/3 - ((155 + 3*Sqrt[849])/2)^(1/3)/3 + 2*Sqrt[3/(4 + ((155 - 3*Sqrt[849])/2)^(1/3) + ((155 + 3*Sqrt[849])/2)^(1/3))]]/2, 10, 105][[1]]
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Oct 01 2024
STATUS
approved