login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377075
G.f.: Sum_{k>=0} x^(8*k^2) / Product_{j=1..8*k-1} (1 - x^j).
3
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618, 734, 861, 1011, 1178, 1372, 1586, 1835, 2108, 2422, 2768, 3162, 3595, 4088, 4627, 5237, 5907, 6660, 7485, 8414, 9429, 10568, 11817, 13213
OFFSET
0,11
COMMENTS
In general, for m >= 1, if g.f.= Sum_{k>=1} x^(m*k^2)/Product_{j=1..m*k-1} (1-x^j), then a(n) ~ r^2 * (m*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((m*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(Pi*m*(m - (m-2)*r^2)) * n^(3/4)), where r is the positive real root of the equation r^2 = 1 - r^m.
LINKS
FORMULA
Limit_{n->oo} a(n)^(1/sqrt(n)) = A376658.
a(n) ~ r^2 * (8*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((8*log(r)^2 + polylog(2, r^2))*n)) / (8*sqrt(Pi*(4 - 3*r^2)) * n^(3/4)), where r = 0.8511709340670154789... is the positive real root of the equation r^2 = 1 - r^8.
MATHEMATICA
nmax = 100; CoefficientList[Series[Sum[x^(8*k^2)/Product[1-x^j, {j, 1, 8*k-1}], {k, 1, Sqrt[nmax/8]}], {x, 0, nmax}], x]
CROSSREFS
Column 8 of A350889.
Cf. A376658.
Sequence in context: A339672 A026813 A008636 * A008630 A347573 A238865
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 15 2024
STATUS
approved