login
A376621
Decimal expansion of a constant related to the asymptotics of A369557 and A376580.
10
2, 7, 5, 1, 0, 8, 5, 0, 9, 0, 8, 8, 8, 9, 1, 9, 9, 3, 9, 4, 3, 4, 2, 0, 4, 9, 6, 2, 0, 4, 8, 9, 4, 7, 0, 3, 6, 4, 1, 8, 1, 7, 8, 6, 0, 2, 6, 3, 7, 1, 7, 5, 0, 9, 8, 2, 8, 1, 1, 3, 2, 5, 9, 3, 9, 3, 2, 9, 1, 3, 8, 2, 2, 8, 4, 0, 1, 1, 7, 9, 3, 5, 6, 5, 7, 6, 2, 5, 2, 6, 2, 6, 0, 8, 7, 8, 2, 8, 0, 4, 9, 2, 4
OFFSET
1,1
FORMULA
Equals limit_{n->infinity} A369557(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376580(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376542(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376623(n)^(1/sqrt(n)).
Equals exp(sqrt(3*log(r)^2/2 + 4*polylog(2, r^(1/2)) - Pi^2/3)), where r = A088559 = 0.465571231876768026656731... is the real root of the equation r*(1+r)^2 = 1. - Vaclav Kotesovec, Oct 07 2024
EXAMPLE
2.75108509088891993943420496204894703641817860263717...
MATHEMATICA
RealDigits[E^Sqrt[3*Log[r]^2/2 + 4*PolyLog[2, r^(1/2)] - Pi^2/3] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* Vaclav Kotesovec, Oct 07 2024 *)
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 30 2024
STATUS
approved