OFFSET
1,1
FORMULA
Equals limit_{n->infinity} A369557(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376580(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376542(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376623(n)^(1/sqrt(n)).
Equals exp(sqrt(3*log(r)^2/2 + 4*polylog(2, r^(1/2)) - Pi^2/3)), where r = A088559 = 0.465571231876768026656731... is the real root of the equation r*(1+r)^2 = 1. - Vaclav Kotesovec, Oct 07 2024
EXAMPLE
2.75108509088891993943420496204894703641817860263717...
MATHEMATICA
RealDigits[E^Sqrt[3*Log[r]^2/2 + 4*PolyLog[2, r^(1/2)] - Pi^2/3] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* Vaclav Kotesovec, Oct 07 2024 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 30 2024
STATUS
approved