login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201838
G.f.: imaginary part of 1/(1 - i*x - i*x^2) where i=sqrt(-1).
3
0, 1, 1, -1, -3, -2, 4, 9, 3, -15, -25, 0, 52, 65, -27, -169, -155, 158, 520, 321, -681, -1519, -481, 2560, 4200, -79, -8839, -10881, 4797, 28638, 25804, -27351, -87877, -52895, 116775, 256000, 76892, -436655, -705667, 26871, 1502085, 1821118, -850160
OFFSET
0,5
COMMENTS
The norm of the coefficients in 1/(1 - i*x - i*x^2) is given by A105309.
FORMULA
G.f.: x*(1+x)/(1 + x^2*(1+x)^2).
a(n) = A201837(n-1) + A201837(n-2), where A201837 gives the real part of the coefficients in 1/(1 - i*x - i*x^2).
a(n) = Im((((i + sqrt(4*i-1))^(n+1) - (i - sqrt(4*i-1))^(n+1)))/(2^(n+1)*sqrt(4*i-1))), where i=sqrt(-1). - Daniel Suteu, Apr 20 2018
EXAMPLE
G.f.: A(x) = x + x^2 - x^3 - 3*x^4 - 2*x^5 + 4*x^6 + 9*x^7 + 3*x^8 - 15*x^9 +...
A201837 gives the real part of coefficients in 1/(1 - i*x - i*x^2) and begins: 1, 0, -1, -2, 0, 4, 5, -2, -13, -12, 12, 40, 25, -52, -117, -38, 196, 324,... in which the pairwise sums generate this sequence.
MATHEMATICA
LinearRecurrence[{0, -1, -2, -1}, {0, 1, 1, -1}, 50] (* Harvey P. Dale, Apr 23 2024 *)
PROG
(PARI) {a(n)=imag(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)), n))}
(PARI) {a(n)=polcoeff(x*(1+x)/(1 + x^2 + 2*x^3 + x^4 +x*O(x^n)), n)}
CROSSREFS
Cf. A201837 (real), A105309 (norm).
Sequence in context: A171559 A300883 A019916 * A099257 A374789 A325909
KEYWORD
sign,easy
AUTHOR
Paul D. Hanna, Dec 06 2011
STATUS
approved