|
|
A210562
|
|
Triangle of coefficients of polynomials v(n,x) jointly generated with A210561; see the Formula section.
|
|
3
|
|
|
1, 2, 2, 2, 5, 4, 2, 6, 12, 8, 2, 6, 17, 28, 16, 2, 6, 18, 46, 64, 32, 2, 6, 18, 53, 120, 144, 64, 2, 6, 18, 54, 152, 304, 320, 128, 2, 6, 18, 54, 161, 424, 752, 704, 256, 2, 6, 18, 54, 162, 474, 1152, 1824, 1536, 512, 2, 6, 18, 54, 162, 485, 1372, 3056, 4352
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Last term in row n: 2^(n-1)
Limiting row: 2*3^(n-1)
Alternating row sums: 1,0,1,0,1,0,1,0,...
For a discussion and guide to related arrays, see A208510.
u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
First five rows:
1
2...2
2...5...4
2...6...12...8
2...6...17...28...16
First three polynomials v(n,x): 1, 2 + 2x , 2 + 5x + 4x^2.
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
|
|
LINKS
|
|
|
FORMULA
|
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1).
E.g.f for the n-th subdiagonal: exp(2*x)*(2 + 2*x + 2*x^2/2! + 2*x^3/3! + ... + 2*x^(n-1)/(n-1)! + x^n/n!).
Riordan array ((1 + x)/(1 - x), x*(2 + x)).
Row sums A005409 (except for the initial term).
(End)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|