login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208512
Triangle of coefficients of polynomials v(n,x) jointly generated with A208511; see the Formula section.
3
1, 2, 2, 2, 5, 4, 2, 7, 12, 8, 2, 9, 21, 28, 16, 2, 11, 32, 58, 64, 32, 2, 13, 45, 101, 152, 144, 64, 2, 15, 60, 159, 296, 384, 320, 128, 2, 17, 77, 234, 513, 824, 944, 704, 256, 2, 19, 96, 328, 822, 1554, 2208, 2272, 1536, 512, 2, 21, 117, 443, 1244, 2685
OFFSET
1,2
COMMENTS
Alternating row sums are signed Fibonacci numbers (A000045).
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2...2
2...5...4
2...7...12...8
2...9...21...28...16
First five polynomials v(n,x):
1
2 + 2x
2 + 5x + 4x^2
2 + 7x + 12x^2 + 8x^3
2 + 9x + 21x^2 + 28x^3 + 16x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208511 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208512 *)
CROSSREFS
Cf. A208511.
Sequence in context: A076737 A246119 A210562 * A208908 A209558 A209772
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 28 2012
STATUS
approved