login
A208514
Triangle of coefficients of polynomials u(n,x) jointly generated with A208515; see the Formula section.
4
1, 1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 6, 7, 5, 1, 5, 8, 12, 13, 8, 1, 6, 10, 18, 24, 23, 13, 1, 7, 12, 25, 38, 46, 41, 21, 1, 8, 14, 33, 55, 78, 88, 72, 34, 1, 9, 16, 42, 75, 120, 158, 165, 126, 55, 1, 10, 18, 52, 98, 173, 255, 313, 307, 219, 89, 1, 11, 20, 63, 124, 238
OFFSET
1,5
COMMENTS
u(n,n) = Fibonacci(n), A000045
u(n+1,n) = A208354(n)
col 1: A000012
col 2: A000027
col 3: A005843
col 4: A055998
col 5: A140090
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...1
1...2...2
1...3...4...3
1...4...6...7...5
First five polynomials u(n,x):
1
1 + x
1 + 2x + 2x^2
1 + 3x + 4x^2 + 3x^3
1 + 4x + 6x^2 + 7x^3 + 5x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208514 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208515 *)
CROSSREFS
Cf. A208515.
Sequence in context: A323899 A182630 A208805 * A179901 A209561 A283822
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 28 2012
STATUS
approved