login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210561
Triangle of coefficients of polynomials u(n,x) jointly generated with A210562; see the Formula section.
2
1, 1, 2, 1, 3, 4, 1, 3, 8, 8, 1, 3, 9, 20, 16, 1, 3, 9, 26, 48, 32, 1, 3, 9, 27, 72, 112, 64, 1, 3, 9, 27, 80, 192, 256, 128, 1, 3, 9, 27, 81, 232, 496, 576, 256, 1, 3, 9, 27, 81, 242, 656, 1248, 1280, 512, 1, 3, 9, 27, 81, 243, 716, 1808, 3072, 2816, 1024, 1, 3, 9
OFFSET
1,3
COMMENTS
Last term in row n: 2^(n-1)
Limiting row: 3^(k-1)
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Peter Bala, Mar 06 2017: (Start)
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1).
E.g.f. for n-th subdiagonal: exp(2*x)*(1 + x + x^2/2! + x^3/3! + ... + x^n/n!). Cf. A004070.
Riordan array (1/(1 - x), x*(2 + x)).
Row sums A048739.
(End)
EXAMPLE
First five rows:
1
1...2
1...3...4
1...3...8...8
1...3...9...20...16
First three polynomials u(n,x): 1, 1 + 2x, 1 + 3x + 4x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210559 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210560 *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Mar 22 2012
STATUS
approved