OFFSET
1,3
COMMENTS
Last term in row n: 2^(n-1)
Limiting row: 3^(k-1)
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Peter Bala, Mar 06 2017: (Start)
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1).
E.g.f. for n-th subdiagonal: exp(2*x)*(1 + x + x^2/2! + x^3/3! + ... + x^n/n!). Cf. A004070.
Riordan array (1/(1 - x), x*(2 + x)).
Row sums A048739.
(End)
EXAMPLE
First five rows:
1
1...2
1...3...4
1...3...8...8
1...3...9...20...16
First three polynomials u(n,x): 1, 1 + 2x, 1 + 3x + 4x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210559 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210560 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 22 2012
STATUS
approved