login
A210560
Triangle of coefficients of polynomials v(n,x) jointly generated with A210559; see the Formula section.
4
1, 3, 1, 5, 4, 2, 7, 9, 9, 3, 9, 16, 23, 16, 5, 11, 25, 46, 48, 30, 8, 13, 36, 80, 110, 101, 54, 13, 15, 49, 127, 215, 257, 203, 97, 21, 17, 64, 189, 378, 552, 570, 401, 172, 34, 19, 81, 268, 616, 1057, 1337, 1228, 776, 303, 55, 21, 100, 366, 948, 1862, 2772
OFFSET
1,2
COMMENTS
Column 1: odd positive integers (A005408)
Column 2: squares (A000290)
Row n ends with F(n), where F=A000045 (Fibonacci numbers)
Row sums: A005409
Alternating row sums: 1,2,3,4,5,6,7,8,...(A000027)
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3...1
5...4...2
7...9...9...3
9...16...23...16...5
First three polynomials v(n,x): 1, 3 + x , 5 + 4x + 2x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210559 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210560 *)
CROSSREFS
Sequence in context: A308676 A131809 A016574 * A208922 A209770 A210799
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 22 2012
STATUS
approved