login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210560
Triangle of coefficients of polynomials v(n,x) jointly generated with A210559; see the Formula section.
4
1, 3, 1, 5, 4, 2, 7, 9, 9, 3, 9, 16, 23, 16, 5, 11, 25, 46, 48, 30, 8, 13, 36, 80, 110, 101, 54, 13, 15, 49, 127, 215, 257, 203, 97, 21, 17, 64, 189, 378, 552, 570, 401, 172, 34, 19, 81, 268, 616, 1057, 1337, 1228, 776, 303, 55, 21, 100, 366, 948, 1862, 2772
OFFSET
1,2
COMMENTS
Column 1: odd positive integers (A005408)
Column 2: squares (A000290)
Row n ends with F(n), where F=A000045 (Fibonacci numbers)
Row sums: A005409
Alternating row sums: 1,2,3,4,5,6,7,8,...(A000027)
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3...1
5...4...2
7...9...9...3
9...16...23...16...5
First three polynomials v(n,x): 1, 3 + x , 5 + 4x + 2x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210559 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210560 *)
CROSSREFS
Sequence in context: A308676 A131809 A016574 * A208922 A209770 A210799
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 22 2012
STATUS
approved