login
A209770
Triangle of coefficients of polynomials v(n,x) jointly generated with A209769; see the Formula section.
3
1, 3, 1, 5, 4, 2, 9, 12, 10, 3, 15, 29, 33, 19, 5, 25, 64, 93, 77, 37, 8, 41, 132, 234, 251, 171, 69, 13, 67, 261, 548, 719, 629, 362, 127, 21, 109, 500, 1216, 1884, 2004, 1482, 742, 230, 34, 177, 936, 2592, 4628, 5784, 5196, 3342, 1482, 412, 55, 287
OFFSET
1,2
COMMENTS
Column 1: A001595
Row n ends with F(n), where F=A000045, the Fibonacci numbers.
Row sums: 1,4,11,34,101,304,911,2734,... A060925
Alternating row sums: 1,2,3,4,5,6,7,.... A000027
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3....1
5....4....2
9....12...10...3
15...29...33...19...5
First three polynomials v(n,x): 1, 3 + x , 5 + 4x + 2x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209769 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209770 *)
CROSSREFS
Sequence in context: A016574 A210560 A208922 * A210799 A068512 A011090
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 15 2012
STATUS
approved