The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209773 Triangle of coefficients of polynomials u(n,x) jointly generated with A209774; see the Formula section. 4
 1, 1, 2, 2, 6, 5, 2, 11, 21, 13, 3, 17, 48, 67, 34, 3, 25, 92, 188, 206, 89, 4, 33, 154, 422, 684, 619, 233, 4, 44, 238, 809, 1756, 2365, 1829, 610, 5, 54, 348, 1411, 3801, 6833, 7882, 5334, 1597, 5, 68, 484, 2285, 7369, 16471, 25302, 25549, 15393 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Last term in row n: F(2n+1), where F=A000045, the Fibonacci numbers For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x), v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 1...2 2...6....5 2...11...21...13 3...17...48...67...34 First three polynomials u(n,x): 1, 1 + 2x, 2 + 6x + 5x^2. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A209773 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A209774 *) CROSSREFS Cf. A209774, A208510. Sequence in context: A062400 A064766 A019749 * A209767 A122070 A181661 Adjacent sequences:  A209770 A209771 A209772 * A209774 A209775 A209776 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 21:07 EST 2021. Contains 349344 sequences. (Running on oeis4.)