login
A209774
Triangle of coefficients of polynomials v(n,x) jointly generated with A209773; see the Formula section.
3
1, 2, 3, 2, 7, 8, 3, 12, 25, 21, 3, 19, 56, 84, 55, 4, 26, 103, 227, 269, 144, 4, 36, 169, 486, 848, 833, 377, 5, 45, 259, 914, 2078, 2999, 2518, 987, 5, 58, 372, 1565, 4393, 8277, 10192, 7475, 2584, 6, 69, 518, 2503, 8342, 19420, 31269, 33600, 21881
OFFSET
1,2
COMMENTS
Last term in row n: F(2n), where F=A000045, the Fibonacci numbers
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2...3
2...7....8
3...12...25...21
3...19...56...84...55
First three polynomials v(n,x): 1, 2 + 3x , 2 + 7x + 8x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209773 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209774 *)
CROSSREFS
Sequence in context: A210564 A208930 A122076 * A271322 A373420 A170842
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 15 2012
STATUS
approved