login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122076
Coefficients of a generalized Jaco-Lucas polynomial (even indices) read by rows.
2
2, 3, 2, 7, 8, 2, 18, 30, 15, 2, 47, 104, 80, 24, 2, 123, 340, 355, 170, 35, 2, 322, 1068, 1410, 932, 315, 48, 2, 843, 3262, 5208, 4396, 2079, 532, 63, 2, 2207, 9760, 18280, 18784, 11440, 4144, 840, 80, 2, 5778, 28746, 61785, 74838, 55809, 26226, 7602, 1260
OFFSET
0,1
COMMENTS
Row sums give A052539. - Franck Maminirina Ramaharo, Jul 09 2018
Alternating row sums seem to be 1, except when n=0. - F. Chapoton, Nov 09 2021
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..1325 (offset adapted by Georg Fischer, Jan 31 2019).
Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.
Yidong Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, (2005) 359-370, Table 3.3.
FORMULA
T(n,k) = Sum_(j=0..n) 2n*binomial(2n-j,j)*binomial(j,k)/(2n-j).
From Franck Maminirina Ramaharo, Jul 09 2018: (Start)
T(n,0) = A005248(n).
T(n,1) = A099920(2*n-1).
T(n,n-1) = A005563(n).
(End)
EXAMPLE
The triangle T(n,k) begins:
n\k: 0 1 2 3 4 5 6 7 8 9 10
0: 2
1: 3 2
2: 7 8 2
3: 18 30 15 2
4: 47 104 80 24 2
5: 123 340 355 170 35 2
6: 322 1068 1410 932 315 48 2
7: 843 3262 5208 4396 2079 532 63 2
8: 2207 9760 18280 18784 11440 4144 840 80 2
9: 5778 28746 61785 74838 55809 26226 7602 1260 99 2
10: 15127 83620 202840 282980 249815 144488 54690 13080 1815 120 2
... reformatted and extended. - Franck Maminirina Ramaharo, Jul 09 2018
MATHEMATICA
T[n_, k_] := Sum[ 2n*Binomial[2n - j, j]*Binomial[j, k]/(2n - j), {j, 0, n}]; T[0, 0] = 2; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) t(n, k)={if(n>=1, sum(j=0, n/2, n*binomial(n-j, j)*binomial(j, k)/(n-j)), 2 ); }
T(n, k) = t(2*n, k);
{ nmax=10 ; for(n=0, nmax, for(k=0, n, print1(T(n, k), ", ") ; ); ); }
(GAP) Concatenation([2], Flat(List([1..10], n->List([0..n], k->Sum([0..n], j->2*n*Binomial(2*n-j, j)*Binomial(j, k)/(2*n-j)))))); # Muniru A Asiru, Jul 27 2018
CROSSREFS
Cf. A200073.
Sequence in context: A129022 A210564 A208930 * A209774 A271322 A373420
KEYWORD
easy,nonn,tabl
AUTHOR
R. J. Mathar, Oct 16 2006
EXTENSIONS
Offset changed from 1 to 0 by Franck Maminirina Ramaharo, Jul 30 2018
STATUS
approved