login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122074
a(0)=1, a(1)=6, a(n) = 7*a(n-1) - 2*a(n-2).
3
1, 6, 40, 268, 1796, 12036, 80660, 540548, 3622516, 24276516, 162690580, 1090281028, 7306586036, 48965540196, 328145609300, 2199088184708, 14737326074356, 98763106151076, 661867090908820, 4435543424059588, 29725069786599476, 199204401658077156
OFFSET
0,2
COMMENTS
First row sum of the matrix M^n, where M is the 3 X 3 matrix {{2,2,2},{2,3,2},{2,2,3}}.
LINKS
J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 18.
Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
FORMULA
a(n) = 8*a(n-1) - 9*a(n-2) + 2*a(n-3); a(0)=1, a(1)=6, a(2)=40 (follows from the minimal polynomial x^3 - 8x^2 + 9x - 2 of M).
a(n) = (1/2 + 5*sqrt(41)/82)*(7/2 + sqrt(41)/2)^n + (1/2 - 5*sqrt(41)/82)*(7/2 - sqrt(41)/2)^n. - Antonio Alberto Olivares, Jun 06 2011
G.f.: (1-x)/(1-7*x+2*x^2). - Colin Barker, Feb 08 2012
E.g.f.: (1/41)*exp(7*x/2)*(41*cosh(sqrt(41)*x/2) + 5*sqrt(41)*sinh(sqrt(41)*x/2)). - Stefano Spezia, Oct 03 2019
EXAMPLE
a(2)=40 because M^2={{12,14,14},{14,17,16},{14,16,17}} and 12+14+14=40.
MAPLE
with(linalg): M[1]:=matrix(3, 3, [2, 2, 2, 2, 3, 2, 2, 2, 3]): for n from 2 to 20 do M[n]:=multiply(M[n-1], M[1]) od: 1, seq(M[n][1, 1]+M[n][1, 2]+M[n][1, 3], n=1..20);
# alternative:
f:= gfun:-rectoproc({a(n+2)-7*a(n+1)+2*a(n), a(0)=1, a(1)=6}, a(n), remember):
seq(f(n), n=0..30); # Robert Israel, Oct 02 2015
MATHEMATICA
M = {{2, 2, 2}, {2, 3, 2}, {2, 2, 3}}; v[1] = {1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 50}]
Transpose[NestList[{Last[#], 7*Last[#]-2*First[#]}&, {1, 6}, 25]] [[1]] (* Harvey P. Dale, Mar 11 2011 *)
f[s_] := Append[s, 7*s[[-1]] - 2*s[[-2]]]; Nest[f, {1, 6}, 18] (* Robert G. Wilson v, Mar 12 2011 *)
LinearRecurrence[{7, -2}, {1, 6}, 25] (* Harvey P. Dale, Jan 04 2014 *)
PROG
(PARI) Vec((1-x)/(1-7*x+2*x^2) + O(x^30)) \\ Michel Marcus, Oct 03 2015
(Magma) I:=[1, 6]; [n le 2 select I[n] else 7*Self(n-1)-2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 03 2015
(Sage)
def A122074_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x)/(1-7*x+2*x^2)).list()
A122074_list(30) # G. C. Greubel, Oct 02 2019
(GAP) a:=[1, 6];; for n in [3..30] do a[n]:=7*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Oct 02 2019
CROSSREFS
Sequence in context: A065113 A052518 A135032 * A289208 A244253 A123357
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Oct 16 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 29 2006 and Dec 04 2006
STATUS
approved