OFFSET
1,1
COMMENTS
The sequence of square roots of the sum of the squares of the n-th and the (n+1)st triangular numbers is A046176.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
M. Ulas, On certain diophantine equations related to triangular and tetrahedral numbers, arXiv:0811.2477 [math.NT] (2008)
Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
FORMULA
a(n) - a(n-1) = A003499(n).
From Michael Somos, Apr 07 2003: (Start)
G.f.: 2*x*(3-x)/((1-6*x+x^2)*(1-x)).
a(n) = 6*a(n-1) - a(n-2) + 4.
a(-1-n) = -a(n) - 2. (End)
a(1)=6, a(2)=40, a(3)=238, a(n) = 7*a(n-1)-7*a(n-2)+a(n-3). - Harvey P. Dale, Dec 27 2011
a(n) = (-2-(3-2*sqrt(2))^n*(-1+sqrt(2))+(1+sqrt(2))*(3+2*sqrt(2))^n)/2. - Colin Barker, Mar 05 2016
From Klaus Purath, Sep 05 2021: (Start)
(a(n+1) - a(n) - a(n-1) + a(n-2))/8 = A005319(n), for n >= 3.
a(n) = A265278(2*n+1).
a(n) = A293004(2*n+1).
a(n) = A213667(2*n).
a(n) = Sum_{k=1..n} A003499(k). (End)
EXAMPLE
T6 = 21 and T7 = 28, 21^2 + 28^2 = 441 + 784 = 1225 = 35^2.
MATHEMATICA
CoefficientList[ Series[2*(x - 3)/(-1 + 7x - 7x^2 + x^3), {x, 0, 24} ], x]
LinearRecurrence[{7, -7, 1}, {6, 40, 238}, 41] (* Harvey P. Dale, Dec 27 2011 *)
PROG
(PARI) a(n)=-1+subst(poltchebi(abs(n+1))-poltchebi(abs(n)), x, 3)/2
(PARI) Vec(2*x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^40)) \\ Colin Barker, Mar 05 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Nov 12 2001
STATUS
approved