login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135032 a(n) = 6*a(n-1) + 4*a(n-2). 7
0, 1, 6, 40, 264, 1744, 11520, 76096, 502656, 3320320, 21932544, 144876544, 956989440, 6321442816, 41756614656, 275825459200, 1821979213824, 12035177119744, 79498979573760, 525134585921536, 3468803433824256 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 6's along the main diagonal, and 2's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 19 2011

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (6,4).

FORMULA

a(0)=0; a(1)=1; a(n) = 2*(3*a(n-1) + 2*a(n-2)).

a(n) = 1/(2*sqrt(13))*( (3 + sqrt(13))^n - (3 - sqrt(13))^n ).

from R. J. Mathar, Oct 15 2012: (Start)

a(n+1) = 2^n*A006190(n+1).

G.f.: x /( 1 - 6*x - 4*x^2 ). (End)

E.g.f.: (1/sqrt(13))*exp(3*x)*sinh(sqrt(13)*x). - G. C. Greubel, Sep 17 2016

MATHEMATICA

Join[{a=0, b=1}, Table[c=6*b+4*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)

LinearRecurrence[{6, 4}, {0, 1}, 25] (* G. C. Greubel, Sep 17 2016 *)

PROG

(Sage) [lucas_number1(n, 6, -4) for n in xrange(0, 21)] # Zerinvary Lajos, Apr 24 2009

(MAGMA) [n le 2 select n-1 else 6*Self(n-1)+4*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016

(PARI) x='x+O('x^30); concat([0], Vec(x/(1-6*x-4*x^2))) \\ G. C. Greubel, Jan 24 2018

CROSSREFS

Sequence in context: A026077 A065113 A052518 * A122074 A289208 A244253

Adjacent sequences:  A135029 A135030 A135031 * A135033 A135034 A135035

KEYWORD

nonn,easy

AUTHOR

Rolf Pleisch, Feb 10 2008, corrected Feb 14 2008

EXTENSIONS

More terms from Alexis Olson (AlexisOlson(AT)gmail.com), Nov 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 12:36 EDT 2018. Contains 316419 sequences. (Running on oeis4.)