login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135032
a(n) = 6*a(n-1) + 4*a(n-2).
7
0, 1, 6, 40, 264, 1744, 11520, 76096, 502656, 3320320, 21932544, 144876544, 956989440, 6321442816, 41756614656, 275825459200, 1821979213824, 12035177119744, 79498979573760, 525134585921536, 3468803433824256
OFFSET
0,3
COMMENTS
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 6's along the main diagonal, and 2's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 19 2011
FORMULA
a(0)=0; a(1)=1; a(n) = 2*(3*a(n-1) + 2*a(n-2)).
a(n) = 1/(2*sqrt(13))*( (3 + sqrt(13))^n - (3 - sqrt(13))^n ).
from R. J. Mathar, Oct 15 2012: (Start)
a(n+1) = 2^n*A006190(n+1).
G.f.: x /( 1 - 6*x - 4*x^2 ). (End)
E.g.f.: (1/sqrt(13))*exp(3*x)*sinh(sqrt(13)*x). - G. C. Greubel, Sep 17 2016
MATHEMATICA
Join[{a=0, b=1}, Table[c=6*b+4*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6, 4}, {0, 1}, 25] (* G. C. Greubel, Sep 17 2016 *)
PROG
(Sage) [lucas_number1(n, 6, -4) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) [n le 2 select n-1 else 6*Self(n-1)+4*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-6*x-4*x^2))) \\ G. C. Greubel, Jan 24 2018
CROSSREFS
Sequence in context: A348601 A065113 A052518 * A122074 A289208 A244253
KEYWORD
nonn,easy
AUTHOR
Rolf Pleisch, Feb 10 2008, corrected Feb 14 2008
EXTENSIONS
More terms from Alexis Olson (AlexisOlson(AT)gmail.com), Nov 15 2008
STATUS
approved