OFFSET
0,3
COMMENTS
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 6's along the main diagonal, and 2's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 19 2011
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,4).
FORMULA
a(0)=0; a(1)=1; a(n) = 2*(3*a(n-1) + 2*a(n-2)).
a(n) = 1/(2*sqrt(13))*( (3 + sqrt(13))^n - (3 - sqrt(13))^n ).
from R. J. Mathar, Oct 15 2012: (Start)
a(n+1) = 2^n*A006190(n+1).
G.f.: x /( 1 - 6*x - 4*x^2 ). (End)
E.g.f.: (1/sqrt(13))*exp(3*x)*sinh(sqrt(13)*x). - G. C. Greubel, Sep 17 2016
MATHEMATICA
Join[{a=0, b=1}, Table[c=6*b+4*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6, 4}, {0, 1}, 25] (* G. C. Greubel, Sep 17 2016 *)
PROG
(Sage) [lucas_number1(n, 6, -4) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) [n le 2 select n-1 else 6*Self(n-1)+4*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-6*x-4*x^2))) \\ G. C. Greubel, Jan 24 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Rolf Pleisch, Feb 10 2008, corrected Feb 14 2008
EXTENSIONS
More terms from Alexis Olson (AlexisOlson(AT)gmail.com), Nov 15 2008
STATUS
approved