login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289208
Number of rooted essentially 4-connected toroidal triangulations with n vertices.
3
0, 1, 6, 40, 268, 1801, 12120, 81628, 550040, 3707635, 24997966, 168573824, 1136933488, 7668785996, 51731557296, 348991600660, 2354505179952, 15885669341751, 107183855819490, 723217053276952, 4880016412621148, 32929530655094281
OFFSET
0,3
LINKS
N. Bonichon and B. Lévêque, A bijection for essentially 4-connected toroidal triangulations, arXiv preprint arXiv:1707.08191 [cs.DM], 2017.
N. Bonichon and B. Lévêque, A bijection for essentially 4-connected toroidal triangulations, The Electronic Journal of Combinatorics 26 (2019) P1.13.
FORMULA
G.f.: x*A/(7*A^2*x - 21*A*x + 9*x + 1) where A = 1+x*A^3 is the g.f. of A001764.
0 = 729*T^3*x^3 + 2700*T^3*x^2 - 848*T^3*x + 756*T^2*x^2 + 64*T^3 - 112*T^2*x + 54*T*x^2 - T*x + x^2 where T is the g.f. of this sequence.
From Vaclav Kotesovec, Jun 25 2019: (Start)
a(n) ~ 3^(3*n) / 2^(2*n + 3).
Recurrence: 32*(n-1)*(2*n-1)*(3*n-1)*(7*n-18)*a(n) = 16*(1113*n^4 - 5753*n^3 + 8619*n^2 - 1717*n - 3462)*a(n-1) - 6*(9450*n^4 - 56367*n^3 + 93156*n^2 - 2813*n - 64226)*a(n-2) - 81*(3*n-8)*(3*n-7)*(3*n+2)*(7*n-11)*a(n-3).
(End)
MAPLE
n := 30; t := series(RootOf(729*T^3*x^3+2700*T^3*x^2-848*T^3*x +756*T^2*x^2 +64*T^3 -112*T^2*x +54*T*x^2-T*x+x^2, T), x = 0, n+1): seq(coeff(t, x, k), k = 0 .. n);
MATHEMATICA
terms = 22; T[_] = 0; Do[T[x_] = (1/(x (-1 + 54 x)))(-x^2 + 112 x T[x]^2 - 756 x^2 T[x]^2 - 64 T[x]^3 + 848 x T[x]^3 - 2700 x^2 T[x]^3 - 729 x^3 T[x]^3) + O[x]^terms // Normal, {terms}];
CoefficientList[T[x], x] (* Jean-François Alcover, Nov 16 2018 *)
CROSSREFS
Cf. A001764.
Sequence in context: A052518 A135032 A122074 * A244253 A123357 A081016
KEYWORD
nonn
AUTHOR
Nicolas Bonichon, Jun 28 2017
STATUS
approved