Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jan 04 2025 13:48:30
%S 0,1,6,40,268,1801,12120,81628,550040,3707635,24997966,168573824,
%T 1136933488,7668785996,51731557296,348991600660,2354505179952,
%U 15885669341751,107183855819490,723217053276952,4880016412621148,32929530655094281
%N Number of rooted essentially 4-connected toroidal triangulations with n vertices.
%H N. Bonichon and B. Lévêque, <a href="https://arxiv.org/abs/1707.08191">A bijection for essentially 4-connected toroidal triangulations</a>, arXiv preprint arXiv:1707.08191 [cs.DM], 2017.
%H N. Bonichon and B. Lévêque, <a href="https://doi.org/10.37236/7897">A bijection for essentially 4-connected toroidal triangulations</a>, The Electronic Journal of Combinatorics 26 (2019) P1.13.
%F G.f.: x*A/(7*A^2*x - 21*A*x + 9*x + 1) where A = 1+x*A^3 is the g.f. of A001764.
%F 0 = 729*T^3*x^3 + 2700*T^3*x^2 - 848*T^3*x + 756*T^2*x^2 + 64*T^3 - 112*T^2*x + 54*T*x^2 - T*x + x^2 where T is the g.f. of this sequence.
%F From _Vaclav Kotesovec_, Jun 25 2019: (Start)
%F a(n) ~ 3^(3*n) / 2^(2*n + 3).
%F Recurrence: 32*(n-1)*(2*n-1)*(3*n-1)*(7*n-18)*a(n) = 16*(1113*n^4 - 5753*n^3 + 8619*n^2 - 1717*n - 3462)*a(n-1) - 6*(9450*n^4 - 56367*n^3 + 93156*n^2 - 2813*n - 64226)*a(n-2) - 81*(3*n-8)*(3*n-7)*(3*n+2)*(7*n-11)*a(n-3). (End)
%p n := 30; t := series(RootOf(729*T^3*x^3+2700*T^3*x^2-848*T^3*x +756*T^2*x^2 +64*T^3 -112*T^2*x +54*T*x^2-T*x+x^2, T), x = 0, n+1): seq(coeff(t, x, k), k = 0 .. n);
%t terms = 22; T[_] = 0; Do[T[x_] = (1/(x (-1 + 54 x)))(-x^2 + 112 x T[x]^2 - 756 x^2 T[x]^2 - 64 T[x]^3 + 848 x T[x]^3 - 2700 x^2 T[x]^3 - 729 x^3 T[x]^3) + O[x]^terms // Normal, {terms}];
%t CoefficientList[T[x], x] (* _Jean-François Alcover_, Nov 16 2018 *)
%Y Cf. A001764.
%K nonn,changed
%O 0,3
%A _Nicolas Bonichon_, Jun 28 2017