login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289206
Greedy strictly increasing sequence starting at a(1)=1 avoiding both arithmetic and geometric progressions of length 3.
1
1, 2, 5, 6, 12, 13, 15, 16, 32, 33, 35, 39, 40, 42, 56, 81, 84, 85, 88, 90, 93, 94, 108, 109, 113, 115, 116, 159, 189, 207, 208, 222, 223, 232, 235, 240, 243, 244, 249, 250, 252, 259, 267, 271, 289, 304, 314, 318, 325, 340, 342, 397, 504, 508, 511, 531, 549
OFFSET
1,2
COMMENTS
By avoiding arithmetic progressions, at most 2/3 of the numbers up to a(n) are in the sequence. The sequence doesn't contain 3 consecutive powers in arithmetic progression for any base c.
Where a(n)+1 = a(n+1): 1, 3, 5, 7, 9, 12, 17, 21, 23, 26, 30, 32, 37, 39, etc. - Robert G. Wilson v, Jul 02 2017
FORMULA
a(n) >= 3n/2 for n > 2.
EXAMPLE
5 is in the sequence because 1,2,5 is neither an arithmetic progression nor a geometric progression.
PROG
(PARI) {my(a=[1, 2]);
for(x=3, 100,
if(#select(r->#select(q->q==2*r, b)==0, b=vecsort(apply(r->x-r, a)))==#a && #select(r->#select(q->q==r^2, b)==0, b=vecsort(apply(r->x/r, a)))==#a, a=concat(a, x))); a
}
(PARI) first(n)=my(v=vector(n)); v[1]=1; for(k=2, n, my(avoid=List(), t, last=v[k-1]); for(i=2, k-1, for(j=1, i-1, t=2*v[i]-v[j]; if(t>last, listput(avoid, t)); if(denominator(t=v[i]^2/v[j])==1 && t>last, listput(avoid, t)))); avoid=Set(avoid); for(i=v[k-1]+1, v[k-1]+#avoid+1, if(!setsearch(avoid, i), v[k]=i; break))); v \\ Charles R Greathouse IV, Jun 29 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Roderick MacPhee, Jun 28 2017
EXTENSIONS
More terms from Alois P. Heinz, Jun 28 2017
STATUS
approved