login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289203
Number of maximum independent vertex sets in the n X n knight graph.
2
1, 1, 2, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Knight Graph
Eric Weisstein's World of Mathematics, Maximum Independent Vertex Set
FORMULA
For n > 4, a(n) = ((-1)^n + 3)/2.
G.f.: (x*(-1 - x - x^2 - 5*x^3 + x^4 + 4*x^5))/(-1 + x^2).
MATHEMATICA
Table[Length[With[{g = KnightTourGraph[n, n]}, FindIndependentVertexSet[g, Length /@ FindIndependentVertexSet[g], All]]], {n, 8}]
Table[Piecewise[{{1, n == 2}, {2, n == 3}, {6, n == 4}, {2, Mod[n, 2] == 0}, {1, Mod[n, 2] == 1}}], {n, 100}]
Table[Piecewise[{{1, n == 2}, {2, n == 3}, {6, n == 4}}, ((-1)^n + 3)/2], {n, 100}]
CoefficientList[Series[(-1 - x - x^2 - 5 x^3 + x^4 + 4 x^5)/(-1 + x^2), {x, 0, 20}], x]
PROG
(Python)
def A289203(n): return (1, 1, 2, 6)[n-1] if n<5 else 2-(n&1) # Chai Wah Wu, Feb 12 2024
CROSSREFS
Cf. A000034.
Sequence in context: A024573 A191359 A339766 * A246505 A302551 A078434
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 28 2017
STATUS
approved