login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289209
Coefficients in expansion of E_4^3/E_6^2.
20
1, 1728, 1700352, 1332930816, 939690602496, 624182333927040, 399031077924476928, 248370528839869094400, 151578005556161702559744, 91116938989182168182098368, 54119528875319902426524072960, 31833210323194251819350736777984
OFFSET
0,2
LINKS
FORMULA
G.f.: 1 + 1728 * q * Product_{k>=1} (1-q^k)^24 / E_6^2.
G.f.: (E_4*E_8)/(E_6*E_6) = (E_8*E_8)/(E_6*E_10). - Seiichi Manyama, Jun 29 2017
a(n) = 1728 * A289417(n - 1) for n > 0. - Seiichi Manyama, Jul 08 2017
a(n) ~ c * exp(2*Pi*n) * n, where c = 256 * Pi^6 / (3 * Gamma(1/4)^8) = 2.747700206704861755142526128354171788550012833617513654955480535522... - Vaclav Kotesovec, Jul 08 2017, updated Mar 04 2018
a(0) = 1, a(n) = (288/n)*Sum_{k=1..n} A300025(k)*a(n-k) for n > 0. - Seiichi Manyama, Feb 26 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}])^3 / (1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
CROSSREFS
(E_4^3/E_6^2)^(k/288): A289365 (k=1), A299694 (k=2), A299696 (k=3), A299697 (k=4), A299698 (k=6), A299943 (k=8), A299949 (k=9), A289369 (k=12), A299950 (k=16), A299951 (k=18), A299953 (k=24), A299993 (k=32), A299994 (k=36), A300052 (k=48), A300053 (k=72), A300054 (k=96), A300055 (k=144), this sequence (k=288).
E_{k+2}/E_k: A288261 (k=4, 8), A288840 (k=6).
Sequence in context: A002519 A052068 A289210 * A114767 A350384 A165134
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 28 2017
STATUS
approved