login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288840
Coefficients in expansion of E_8/E_6.
17
1, 984, 574488, 307081056, 164453203992, 88062998451984, 47157008244215904, 25252184242734325440, 13522333949728177520664, 7241096993206804017918456, 3877547016709833498690361488, 2076394071353012138642420600352
OFFSET
0,2
REFERENCES
Ken Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Regional Conference Series in Mathematics, vol. 102, American Mathematical Society, Providence, RI, 2004.
LINKS
FORMULA
From Seiichi Manyama, Jun 27 2017: (Start)
Let j_0 = 1 and j_1 = j - 744. Define j_m by j_m = j1 | T_0(m), where T_0(m) = mT_{m, 0} is the normalized m-th weight zero Hecke operator. a(n) = j_n(i).
G.f.: Sum_{n >= 0} j_n(i)*q^n. (End)
a(n) ~ 2 * exp(2*Pi*n). - Vaclav Kotesovec, Jun 28 2017
G.f.: -q*j'/(j-1728) where j is the elliptic modular invariant (A000521). - Seiichi Manyama, Jul 12 2017
EXAMPLE
G.f.: 1 + 984*q + 574488*q^2 + 307081056*q^3 + 164453203992*q^4 + 88062998451984*q^5 + 47157008244215904*q^6 + ...
From Seiichi Manyama, Jun 27 2017: (Start)
a(0) = j_0(i) = 1,_
a(1) = j_1(i) = -744 + 1728^1 = 984,
a(2) = j_2(i) = 159768 - 1488*1728^1 + 1728^2 = 574488. (End)
MATHEMATICA
nmax = 20; CoefficientList[Series[(1 + 480*Sum[DivisorSigma[7, k]*x^k, {k, 1, nmax}])/(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 28 2017 *)
terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[Ei[8]/Ei[6] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
CROSSREFS
Cf. A013973 (E_6), A008410 (E_8).
Cf. A288261 (E_6/E_4).
Cf. A000521 (j), A035230 (-q*j'), A289141, A289417.
Sequence in context: A289063 A289061 A294183 * A289417 A131640 A333443
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 17 2017
STATUS
approved