Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Mar 01 2018 02:45:43
%S 1,984,574488,307081056,164453203992,88062998451984,47157008244215904,
%T 25252184242734325440,13522333949728177520664,
%U 7241096993206804017918456,3877547016709833498690361488,2076394071353012138642420600352
%N Coefficients in expansion of E_8/E_6.
%D Ken Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Regional Conference Series in Mathematics, vol. 102, American Mathematical Society, Providence, RI, 2004.
%H Seiichi Manyama, <a href="/A288840/b288840.txt">Table of n, a(n) for n = 0..366</a>
%F From _Seiichi Manyama_, Jun 27 2017: (Start)
%F Let j_0 = 1 and j_1 = j - 744. Define j_m by j_m = j1 | T_0(m), where T_0(m) = mT_{m, 0} is the normalized m-th weight zero Hecke operator. a(n) = j_n(i).
%F G.f.: Sum_{n >= 0} j_n(i)*q^n. (End)
%F a(n) ~ 2 * exp(2*Pi*n). - _Vaclav Kotesovec_, Jun 28 2017
%F G.f.: -q*j'/(j-1728) where j is the elliptic modular invariant (A000521). - _Seiichi Manyama_, Jul 12 2017
%e G.f.: 1 + 984*q + 574488*q^2 + 307081056*q^3 + 164453203992*q^4 + 88062998451984*q^5 + 47157008244215904*q^6 + ...
%e From _Seiichi Manyama_, Jun 27 2017: (Start)
%e a(0) = j_0(i) = 1,_
%e a(1) = j_1(i) = -744 + 1728^1 = 984,
%e a(2) = j_2(i) = 159768 - 1488*1728^1 + 1728^2 = 574488. (End)
%t nmax = 20; CoefficientList[Series[(1 + 480*Sum[DivisorSigma[7, k]*x^k, {k, 1, nmax}])/(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 28 2017 *)
%t terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[Ei[8]/Ei[6] + O[x]^terms, x] (* _Jean-François Alcover_, Mar 01 2018 *)
%Y Cf. A013973 (E_6), A008410 (E_8).
%Y Cf. A288261 (E_6/E_4).
%Y Cf. A000521 (j), A035230 (-q*j'), A289141, A289417.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Jun 17 2017