login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288843
Coefficients of the modular function j_2 = j^2 - 1488*j + 159768.
6
1, 0, 0, 42987520, 40491909396, 8504046600192, 802981794805760, 45134786619187200, 1748627440235850690, 50995654778821050368, 1186243544863135973376, 22919825576889573027840, 378899952498119982698200, 5481261425027249309859840
OFFSET
-2,4
LINKS
K. Ono, A mock theta function for the Delta-function, Proceedings of the 2007 Integers Conference, Carrollton, Georgia, October 24—27, 2007.
FORMULA
a(n) ~ exp(4*Pi*sqrt(2*n)) / (2^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 29 2017
EXAMPLE
G.f. = q^-2 + 42987520*q + 40491909396*q^2 + 8504046600192*q^3 + ... - Michael Somos, Aug 15 2018
MATHEMATICA
a[ n_] := With[{j = 1728 KleinInvariantJ[ Log[q]/(2 Pi I)]}, SeriesCoefficient[ Series[j^2 - 1488 j + 159768, {q, 0, n + 1}], {q, 0, n}]]; (* Michael Somos, Aug 15 2018 *)
CROSSREFS
Cf. A014708 (j_1), this sequence (j_2), A288844 (j_3).
Cf. A000521 (j), A028520.
Sequence in context: A276714 A187963 A028520 * A186580 A186589 A186581
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 17 2017
STATUS
approved