login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in expansion of E_4^3/E_6^2.
20

%I #29 Mar 04 2018 11:41:21

%S 1,1728,1700352,1332930816,939690602496,624182333927040,

%T 399031077924476928,248370528839869094400,151578005556161702559744,

%U 91116938989182168182098368,54119528875319902426524072960,31833210323194251819350736777984

%N Coefficients in expansion of E_4^3/E_6^2.

%H Seiichi Manyama, <a href="/A289209/b289209.txt">Table of n, a(n) for n = 0..365</a>

%F G.f.: 1 + 1728 * q * Product_{k>=1} (1-q^k)^24 / E_6^2.

%F G.f.: (E_4*E_8)/(E_6*E_6) = (E_8*E_8)/(E_6*E_10). - _Seiichi Manyama_, Jun 29 2017

%F a(n) = 1728 * A289417(n - 1) for n > 0. - _Seiichi Manyama_, Jul 08 2017

%F a(n) ~ c * exp(2*Pi*n) * n, where c = 256 * Pi^6 / (3 * Gamma(1/4)^8) = 2.747700206704861755142526128354171788550012833617513654955480535522... - _Vaclav Kotesovec_, Jul 08 2017, updated Mar 04 2018

%F a(0) = 1, a(n) = (288/n)*Sum_{k=1..n} A300025(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Feb 26 2018

%t nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3 / (1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2, {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 08 2017 *)

%Y (E_4^3/E_6^2)^(k/288): A289365 (k=1), A299694 (k=2), A299696 (k=3), A299697 (k=4), A299698 (k=6), A299943 (k=8), A299949 (k=9), A289369 (k=12), A299950 (k=16), A299951 (k=18), A299953 (k=24), A299993 (k=32), A299994 (k=36), A300052 (k=48), A300053 (k=72), A300054 (k=96), A300055 (k=144), this sequence (k=288).

%Y Cf. A004009 (E_4), A013973 (E_6), A289063, A289210, A289417, A300025.

%Y E_{k+2}/E_k: A288261 (k=4, 8), A288840 (k=6).

%K nonn

%O 0,2

%A _Seiichi Manyama_, Jun 28 2017