login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299993
Coefficients in expansion of (E_4^3/E_6^2)^(1/9).
19
1, 192, 41472, 18342144, 7524397056, 3440911653504, 1589472997005312, 756816895536990720, 364982499184388898816, 178417371665487543380928, 88017286719942539086814208, 43770603489875525093472688896, 21905830503405563891572154843136
OFFSET
0,2
LINKS
FORMULA
Convolution inverse of A299863.
a(n) ~ 2^(8/9) * Pi^(2/3) * exp(2*Pi*n) / (3^(1/9) * Gamma(2/9) * Gamma(1/4)^(8/9) * n^(7/9)). - Vaclav Kotesovec, Mar 04 2018
a(n) * A299863(n) ~ -2*sin(2*Pi/9) * exp(4*Pi*n) / (9*Pi*n^2). - Vaclav Kotesovec, Mar 04 2018
MATHEMATICA
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/9) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
CROSSREFS
(E_4^3/E_6^2)^(k/288): A289365 (k=1), A299694 (k=2), A299696 (k=3), A299697 (k=4), A299698 (k=6), A299943 (k=8), A299949 (k=9), A289369 (k=12), A299950 (k=16), A299951 (k=18), A299953 (k=24), this sequence (k=32), A299994 (k=36), A300052 (k=48), A300053 (k=72), A300054 (k=96), A300055 (k=144), A289209 (k=288).
Cf. A004009 (E_4), A013973 (E_6), A299863.
Sequence in context: A001290 A187168 A078272 * A208444 A146554 A183701
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 22 2018
STATUS
approved