login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299698
Coefficients in expansion of (E_4^3/E_6^2)^(1/48).
19
1, 36, 4968, 2551824, 910405152, 416585268216, 182967944992992, 85373023607994528, 40055910812083687680, 19194979975339075406388, 9284600439037161721276848, 4539375955473797523355108272, 2236041702620444573315950439808
OFFSET
0,2
LINKS
FORMULA
Convolution inverse of A297021.
a(n) ~ 2^(1/6) * Pi^(1/8) * exp(2*Pi*n) / (3^(1/48) * Gamma(1/24) * Gamma(1/4)^(1/6) * n^(23/24)). - Vaclav Kotesovec, Mar 04 2018
a(n) * A297021(n) ~ -sin(Pi/24) * exp(4*Pi*n) / (24*Pi*n^2). - Vaclav Kotesovec, Mar 04 2018
MATHEMATICA
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/48) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
CROSSREFS
(E_4^3/E_6^2)^(k/288): A289365 (k=1), A299694 (k=2), A299696 (k=3), A299697 (k=4), this sequence (k=6), A299943 (k=8), A299949 (k=9), A289369 (k=12), A299950 (k=16), A299951 (k=18), A299953 (k=24), A299993 (k=32), A299994 (k=36), A300052 (k=48), A300053 (k=72), A300054 (k=96), A300055 (k=144), A289209 (k=288).
Cf. A004009 (E_4), A013973 (E_6), A297021.
Sequence in context: A127860 A189148 A270506 * A203752 A184135 A275050
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 16 2018
STATUS
approved