Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Mar 04 2018 12:34:00
%S 1,36,4968,2551824,910405152,416585268216,182967944992992,
%T 85373023607994528,40055910812083687680,19194979975339075406388,
%U 9284600439037161721276848,4539375955473797523355108272,2236041702620444573315950439808
%N Coefficients in expansion of (E_4^3/E_6^2)^(1/48).
%H Seiichi Manyama, <a href="/A299698/b299698.txt">Table of n, a(n) for n = 0..367</a>
%F Convolution inverse of A297021.
%F a(n) ~ 2^(1/6) * Pi^(1/8) * exp(2*Pi*n) / (3^(1/48) * Gamma(1/24) * Gamma(1/4)^(1/6) * n^(23/24)). - _Vaclav Kotesovec_, Mar 04 2018
%F a(n) * A297021(n) ~ -sin(Pi/24) * exp(4*Pi*n) / (24*Pi*n^2). - _Vaclav Kotesovec_, Mar 04 2018
%t terms = 13;
%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t (E4[x]^3/E6[x]^2)^(1/48) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *)
%Y (E_4^3/E_6^2)^(k/288): A289365 (k=1), A299694 (k=2), A299696 (k=3), A299697 (k=4), this sequence (k=6), A299943 (k=8), A299949 (k=9), A289369 (k=12), A299950 (k=16), A299951 (k=18), A299953 (k=24), A299993 (k=32), A299994 (k=36), A300052 (k=48), A300053 (k=72), A300054 (k=96), A300055 (k=144), A289209 (k=288).
%Y Cf. A004009 (E_4), A013973 (E_6), A297021.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Feb 16 2018