login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299700
Squarefree part of 1!*2!*3!*...*n!: The product of factorials one through n divided by its largest square divisor.
1
1, 2, 3, 2, 15, 3, 105, 6, 105, 15, 1155, 5, 15015, 70, 1001, 70, 17017, 35, 323323, 7, 138567, 154, 3187041, 231, 3187041, 6006, 1062347, 858, 30808063, 715, 955049953, 1430, 260468169, 12155, 9116385915, 12155, 337306278855, 461890, 8648878945, 46189, 354604036745, 1939938, 15247973580035, 176358
OFFSET
1,2
COMMENTS
Smallest number such that a(n)*1!*2!*3!*...*n! is a square.
If n is even, a(2n) = A055204(n).
If n is odd and evil (A129771) then a(2n) = A055204(n)/2.
If n is odd and odious (A092246) then a(2n) = 2*A055204(n).
FORMULA
a(n) = A007913(A000178(n)). - Michel Marcus, Feb 17 2018
EXAMPLE
1!*2!*3!*4!*5! = 2^8 * 3^3 * 5^1 so a(5) = 3*5 = 15.
MATHEMATICA
Nest[Append[#, {#, Sqrt[#] /. (c_: 1) a_^(b_: 0) :> (c a^b)^2} &[#[[-1, 1]]*Length[# + 1]!]] &, {{1, 1}}, 44][[All, -1]] (* Michael De Vlieger, Feb 17 2018, after Bill Gosper at A007913 *)
f[n_] := Block[{m = BarnesG[n +2], p = 2}, While[p < n, While[ Mod[m, p^2] == 0, m/=p^2]; p = NextPrime@ p]; m]; Array[f, 42] (* Robert G. Wilson v, Feb 18 2018 *)
PROG
(PARI) a(n) = core(prod(k=1, n, k!)); \\ Michel Marcus, Feb 17 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Graeme McRae, Feb 17 2018
STATUS
approved