login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346759
a(n) = Sum_{d|n} floor(d^2/4).
2
0, 1, 2, 5, 6, 12, 12, 21, 22, 32, 30, 52, 42, 62, 64, 85, 72, 113, 90, 136, 124, 152, 132, 212, 162, 212, 204, 262, 210, 324, 240, 341, 304, 362, 324, 477, 342, 452, 424, 552, 420, 624, 462, 640, 590, 662, 552, 852, 612, 813, 724, 892, 702, 1024, 792, 1062, 904, 1052, 870, 1364
OFFSET
1,3
COMMENTS
Inverse Moebius transform of quarter-squares (A002620).
LINKS
FORMULA
G.f.: Sum_{k>=1} x^(2*k) / ((1 + x^k) * (1 - x^k)^3).
a(n) = (A001157(n) - A001227(n)) / 4.
MAPLE
f:= proc(n) local d;
add(floor(d^2/4), d=numtheory:-divisors(n))
end proc:
map(f, [$1..100]); # Robert Israel, Dec 28 2023
MATHEMATICA
Table[Sum[Floor[d^2/4], {d, Divisors[n]}], {n, 1, 60}]
nmax = 60; CoefficientList[Series[Sum[x^(2 k)/((1 + x^k) (1 - x^k)^3), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
PROG
(PARI) a(n) = sumdiv(n, d, d^2\4); \\ Michel Marcus, Aug 03 2021
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Ilya Gutkovskiy, Aug 02 2021
STATUS
approved