|
|
A135034
|
|
Positive integers n repeated 2n-1 times, with a leading a(0) = 0. Also: ceiling of square root of n.
|
|
2
|
|
|
0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(n) = ceiling(sqrt(n)).
a(n) = A003059(n), for n >= 1. - R. J. Mathar, Jun 18 2008
|
|
EXAMPLE
|
a(1) = ceiling(sqrt(1)) = 1
a(6) = ceiling(sqrt(6)) = 3
|
|
MATHEMATICA
|
Table[Ceiling[Sqrt[n]], {n, 0, 100}] (* Mohammad K. Azarian, Jun 15 2016 *)
Table[PadRight[{}, 2n-1, n], {n, 0, 10}]//Flatten (* Harvey P. Dale, May 15 2022 *)
|
|
PROG
|
(PARI) A135034(n)=ceil(sqrt(n)) \\ M. F. Hasler, Nov 12 2017
|
|
CROSSREFS
|
Cf. A005408, A003059 (restriction to positive indices), A000194 (round(sqrt(n))), A000196 (floor(sqrt(n))).
Sequence in context: A186189 A083375 A088519 * A003059 A325678 A247189
Adjacent sequences: A135031 A135032 A135033 * A135035 A135036 A135037
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
William A. Tedeschi, Feb 10 2008
|
|
EXTENSIONS
|
Edited and corrected by M. F. Hasler, Nov 12 2017
|
|
STATUS
|
approved
|
|
|
|