login
A065110
If n = D0*10^0 + D1*10^1 + D2*10^2 + .. + Dk*10^k define f(n) = D0*0^10 + D1*1^10 + D2*2^10 + .. + Dk*k^10 (e.g. if n = 421 then f(n) = 4*2^10 + 2*1^10 + 1*0^10 = 4098). Sequence gives values of n such that f(n) is divisible by n.
0
1, 2, 3, 4, 5, 6, 7, 8, 9, 385, 1036, 1273, 3574, 18362, 25194, 61725, 119471, 142223, 203190, 284446, 886449, 1568395, 2498685, 6259852, 13060174, 61190538, 125721366, 169860524, 234467828, 234467901, 340815101, 423409957, 518946084, 10000000000
OFFSET
1,2
EXAMPLE
If n = 385 then f(n) = 3*2^10+8*1^10+5*0^10 = 3080 = 8*385.
MATHEMATICA
nmax = 10^6; f[n_] := (id = Reverse[IntegerDigits[n]]; id.Range[0, Length[id] - 1]^10); Reap[For[n = 1, n < nmax, n++, If[Divisible[f[n], n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 30 2017 *)
CROSSREFS
Sequence in context: A306593 A046469 A335151 * A307887 A362843 A344822
KEYWORD
base,nonn
AUTHOR
Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Nov 12 2001
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Nov 18 2001
1..9 inserted and a(27)-a(34) from Sean A. Irvine, Aug 15 2023
STATUS
approved