login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122073
Triangular array from Steinbach matrices plus their squares as characteristic polynomials: M[i,j]=A[i,j]+A[i,j]^2: A[i,j]^2=Min[i,j]; CharacteristicPolynomial[M[i,j]];.
1
1, 2, -1, 0, -4, 1, 2, -9, 8, -1, -2, -3, 19, -12, 1, -4, -6, 47, -55, 18, -1, 2, 15, 0, -88, 93, -24, 1, 2, 23, -7, -190, 324, -182, 32, -1, 0, -12, -63, 62, 332, -554, 274, -40, 1, 2, -9, -108, 133, 678, -1642, 1346, -450, 50, -1, -2, -11, 55, 276, -463, -1129, 2832, -2128, 630, -60, 1, -4, -30, 71, 543, -1044, -2204, 7761
OFFSET
1,2
COMMENTS
Based on the idea that the Steinbach matrices form a "golden Field". Matrices are: {{2, 2}, {2, 2}}, {{2, 2, 2}, {2, 3, 2}, {2, 2, 3}}, {{2, 2, 2, 2}, {2, 3, 3, 2}, {2, 3, 3, 3}, {2, 2, 3, 4}}, {{2, 2, 2, 2, 2}, {2, 3, 3, 3, 2}, {2, 3, 4, 3, 3}, {2, 3, 3, 4, 4}, {2, 2, 3, 4, 5}}, {{2, 2, 2, 2, 2, 2}, {2,3, 3, 3, 3, 2}, {2, 3, 4, 4, 3, 3}, {2, 3, 4, 4, 4, 4}, {2, 3, 3, 4, 5, 5}, {2, 2, 3, 4, 5, 6}}
LINKS
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
FORMULA
d-th level M(i,j)->An[d]; T(n,m)=CoefficientList[CharacteristicPolynomial[An[d], x], x]
EXAMPLE
{1},
{2, -1},
{0, -4, 1},
{2, -9, 8, -1},
{-2, -3, 19, -12, 1},
{-4, -6,47, -55, 18, -1}
{2, 15, 0, -88, 93, -24, 1},
{2, 23, -7, -190, 324, -182, 32, -1},
{0, -12, -63, 62, 332, -554, 274, -40, 1}
MATHEMATICA
An[d_] := Table[Min[n, m] + If[n + m - 1 > d, 0, 1], {n, 1, d}, {m, 1, d}]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%]
CROSSREFS
KEYWORD
tabl,uned,sign
AUTHOR
STATUS
approved