OFFSET
0,3
COMMENTS
Number of positive terms in n-th row (n>=0) equals to A000120(n). - Vladimir Shevelev, Oct 25 2010
Former name: Triangle read by rows, Sierpinski's gasket, A047999 * (1,2,4,8,...) diagonalized. - G. C. Greubel, Dec 02 2024
LINKS
G. C. Greubel, Rows n = 0..100 of the triangle, flattened
FORMULA
Triangle read by rows, A047999 * Q. A047999 = Sierpinski's gasket, Q = an infinite lower triangular matrix with (1,2,4,8,...) as the main diagonal and the rest zeros.
Sum_{k=0..n} T(n, k) = A001317(n).
From G. C. Greubel, Dec 02 2024: (Start)
T(n, k) = 2^k * (binomial(n,k) mod 2).
T(n, n) = A000079(n).
T(2*n, n) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A101624(n).
Sum_{k=0..floor((2*m+1)/2)} T(2*m-k+1, k) = A101625(m+1), m >= 0. (End)
EXAMPLE
First few rows of the triangle are:
1;
1, 2;
1, 0, 4;
1, 2, 4, 8;
1, 0, 0, 0, 16;
1, 2, 0, 0, 16,.32;
1, 0, 4, 0, 16,..0,..64;
1, 2, 4, 8, 16,.32,..64,..128;
1, 0, 0, 0,..0,..0,...0,....0,..256;
1, 2, 0, 0,..0,..0,...0,....0,..256,...512;
1, 0, 4, 0,..0,..0,...0,....0,..256,.....0,...1024;
1, 2, 4, 8,..0,..0,...0,....0,..256,...512,...1024,...2048;
1, 0, 0, 0, 16,..0,...0,....0,..256,.....0,......0,......0,..4096;
...
MATHEMATICA
A166555[n_, k_]:= 2^k*Mod[Binomial[n, k], 2];
Table[A166555[n, k], {n, 0, 14}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 01 2024 *)
PROG
(Magma)
A166555:= func< n, k | 2^k*( Binomial(n, k) mod 2) >;
[A166555(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 01 2024
(SageMath)
def A166555(n, k): return 2^k*int(not ~n & k) if k<n+1 else 0
print(flatten([[A166555(n, k) for k in range(n+1)] for n in range(15)])) # G. C. Greubel, Dec 01 2024
CROSSREFS
KEYWORD
AUTHOR
Gary W. Adamson, Oct 17 2009
EXTENSIONS
New name by G. C. Greubel, Dec 02 2024
STATUS
approved