login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166555
Triangle read by rows, T(n, k) = 2^k * A047999(n, k).
2
1, 1, 2, 1, 0, 4, 1, 2, 4, 8, 1, 0, 0, 0, 16, 1, 2, 0, 0, 16, 32, 1, 0, 4, 0, 16, 0, 64, 1, 2, 4, 8, 16, 32, 64, 128, 1, 0, 0, 0, 0, 0, 0, 0, 256, 1, 2, 0, 0, 0, 0, 0, 0, 256, 512, 1, 0, 4, 0, 0, 0, 0, 0, 256, 0, 1024, 1, 2, 4, 8, 0, 0, 0, 0, 256, 512, 1024, 2048, 1, 0, 0, 0, 16, 0, 0, 0, 256, 0, 0, 0, 4096
OFFSET
0,3
COMMENTS
Number of positive terms in n-th row (n>=0) equals to A000120(n). - Vladimir Shevelev, Oct 25 2010
Former name: Triangle read by rows, Sierpinski's gasket, A047999 * (1,2,4,8,...) diagonalized. - G. C. Greubel, Dec 02 2024
FORMULA
Triangle read by rows, A047999 * Q. A047999 = Sierpinski's gasket, Q = an infinite lower triangular matrix with (1,2,4,8,...) as the main diagonal and the rest zeros.
Sum_{k=0..n} T(n, k) = A001317(n).
From G. C. Greubel, Dec 02 2024: (Start)
T(n, k) = 2^k * (binomial(n,k) mod 2).
T(n, n) = A000079(n).
T(2*n, n) = A000007(n).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*( (1+(-1)^n)*A038183(n/2) - (1-(-1)^n) *A038183((n-1)/2) ).
Sum_{k=0..floor(n/2)} T(n-k, k) = A101624(n).
Sum_{k=0..floor((2*m+1)/2)} T(2*m-k+1, k) = A101625(m+1), m >= 0. (End)
EXAMPLE
First few rows of the triangle are:
1;
1, 2;
1, 0, 4;
1, 2, 4, 8;
1, 0, 0, 0, 16;
1, 2, 0, 0, 16,.32;
1, 0, 4, 0, 16,..0,..64;
1, 2, 4, 8, 16,.32,..64,..128;
1, 0, 0, 0,..0,..0,...0,....0,..256;
1, 2, 0, 0,..0,..0,...0,....0,..256,...512;
1, 0, 4, 0,..0,..0,...0,....0,..256,.....0,...1024;
1, 2, 4, 8,..0,..0,...0,....0,..256,...512,...1024,...2048;
1, 0, 0, 0, 16,..0,...0,....0,..256,.....0,......0,......0,..4096;
...
MATHEMATICA
A166555[n_, k_]:= 2^k*Mod[Binomial[n, k], 2];
Table[A166555[n, k], {n, 0, 14}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 01 2024 *)
PROG
(Magma)
A166555:= func< n, k | 2^k*( Binomial(n, k) mod 2) >;
[A166555(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 01 2024
(SageMath)
def A166555(n, k): return 2^k*int(not ~n & k) if k<n+1 else 0
print(flatten([[A166555(n, k) for k in range(n+1)] for n in range(15)])) # G. C. Greubel, Dec 01 2024
CROSSREFS
Sums include: A001317 (row), A101624 (diagonal), A101625 (odd rows of signed diagonal).
Sequence in context: A143724 A143425 A323376 * A136329 A122073 A106236
KEYWORD
nonn,tabl,changed
AUTHOR
Gary W. Adamson, Oct 17 2009
EXTENSIONS
New name by G. C. Greubel, Dec 02 2024
STATUS
approved