login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166558
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734912, 9659108818866, 115909305825456, 1390911669894318, 16690940038597968, 200291280461569440, 2403495365519559168, 28841944386003420672, 346103332629265575936
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170732, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,11,11,11,11,11,11,11,11,11,11,-66).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^12 - 11*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t +1).
From G. C. Greubel, Dec 03 2024: (Start)
a(n) = 11*Sum_{j=1..11} a(n-j) - 66*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 12*x + 77*x^12 - 66*x^13). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^12)/(1-12*t+77*t^12-66*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 17 2016; Dec 03 2024 *)
coxG[{12, 66, -11}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 03 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+x)*(1-x^12)/(1-12*x+77*x^12-66*x^13) )); // G. C. Greubel, Dec 03 2024
(SageMath)
def A166558_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^12)/(1-12*x+77*x^12-66*x^13) ).list()
A166558_list(40) # G. C. Greubel, Dec 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved